دسته: کامپیوتر
حجم فایل: 407 کیلوبایت
تعداد صفحه: 28
استخراج قوانین وابستگی از پایگاههای داده
Mining Association Rules From Databases
گردآورنده:
1- مقدمه
تحلیل وابستگیها یک حالت غیر نظارتی داده کاوی می باشد که به جستجو برای یافتن ارتباط در مجموعه داده ها می پردازد. یکی از کاربردیترین حالات تحلیل وابستگیها “تجزیه تحلیل سبد بازار ” می باشد.
پیشرفت تکنولوژی فروشگاههای خرده فروشی را قادرساخته است حجم زیادی از داده های مربوط به خرید هر یک از مشتریان که از آن به عنوان سبد بازار یاد میشود را جمعآوری و ذخیره نمایند. دادههای موجود در سبد بازارنشاندهنده خرید مشتری دریک زمان خاص هستند. هر مشتری خرید مجزایی را درکمیتهای مختلف وزمانهای متفاوت انجام میدهد. با تجزیه و تحلیل سبد بازاربینشی برای خردهفروشان ازاینکه چه محصولاتی با هم خریداری میشوند فراهم می گردد و بنابراین میتوانند رفتارخرید مشتریان را پیشبینی کنند این کار به آنها کمک می کند که بهتر بتوانند کالاهای خود را سازماندهی کرده و چیدمان بهتری ازمحصولات خود داشته باشند و بنابراین سودآوری خود را افزایش دهند.
Association rule ها ماهیتاً قوانین احتمالی هستند. بعبارت دیگر قانون XÞAلزوماً قانون X+YÞA رانتیجه نمیدهد زیرا این قانون ممکن است از شرط حداقل Support برخوردار نباشد.
بطرزمشابه قوانین XÞY و YÞZ لزوماً قانون XÞZ را نتیجه نمیدهند زیرا قانون اخیر ممکن است از شرط حداقل Confidence برخوردار نباشد.
2- تعاریف و مفاهیم اصلی
I = { i1، i2، .، im }: مجموعهای از کل ایتمهای خریداری شده است
T: هر زیرمجموعهای از I میباشد که از آن بعنوان تراکنش یاد میکنیم.
D: مجموعه تراکنشهای موجود در T است
: TID شناسه منحصر به فرد و یکتایی است که به هریک از تراکنشهااختصاص مییابد.
نمای کلی یک قانون وایستگی به فرم زیر میباشد:
X Þ Y [support، Confidence]
میباشد بطوریکه داریم: X ÇY = Æ و X Ì I، Y Ì I
2-1- پشتیبان یا Support: نشاندهنده درصد یا تعداد مجموعه تراکنشهایی در D است که شامل هر دوی X و) Y X È Y) باشند.
2-2- اطمینان یا Confidence: میزان وابستگی یک قلم کالای خاص را به دیگری بیان می کند ومطابق فرمول زیر محاسبه میشود:
استخراج قوانین وابستگی از پایگاههای داده
Mining Association Rules From Databases
1- مقدمه
پیشرفت تکنولوژی فروشگاههای خرده فروشی را قادرساخته است حجم زیادی از داده های مربوط به خرید هر یک از مشتریان که از آن به عنوان سبد بازار یاد میشود را جمعآوری و ذخیره نمایند. دادههای موجود در سبد بازارنشاندهنده خرید مشتری دریک زمان خاص هستند. هر مشتری خرید مجزایی را درکمیتهای مختلف وزمانهای متفاوت انجام میدهد. با تجزیه و تحلیل سبد بازاربینشی برای خردهفروشان ازاینکه چه محصولاتی با هم خریداری میشوند فراهم می گردد و بنابراین میتوانند رفتارخرید مشتریان را پیشبینی کنند این کار به آنها کمک می کند که بهتر بتوانند کالاهای خود را سازماندهی کرده و چیدمان بهتری ازمحصولات خود داشته باشند و بنابراین سودآوری خود را افزایش دهند.
Association rule ها ماهیتاً قوانین احتمالی هستند. بعبارت دیگر قانون XÞAلزوماً قانون X+YÞA رانتیجه نمیدهد زیرا این قانون ممکن است از شرط حداقل Support برخوردار نباشد. بطرزمشابه قوانین XÞY و YÞZ لزوماً قانون XÞZ را نتیجه نمیدهند زیرا قانون اخیر ممکن است از شرط حداقل Confidence برخوردار نباشد.
2- تعاریف و مفاهیم اصلی
قیمت: 5,000 تومان