یک روش تازه و بنیادین برای تعیین پارامترهای مدار سیم پیچی میدان و سیم پیچ میراگر ماشین سنکرون پروژه کارشناسی ارشد برق
فایل محتوای:
?) اصل مقاله لاتین IEEE صفحه ?
?) متن ورد ترجمه شده به صورت کاملا تخصصی ?? صفحه
در این عصر محاسبات پیشرفته که الگوریتم های پیشرفته وتکنیک های پرهزینه برای تعیین پارامترهای ماشین سنکرون استفاده می شوند، این مقاله روشی تازه، اقتصادی و بااین وجود، بنیادین را برای تخمین پارامترهای محورهای d و q مدار میدان و مدار میراگر یک ماشین سنکرون با سییم پیچ میدان با توان کم/متوسط را ارایه می دهد. روش جدید پیشنهاد شده، از روابط بنیادین ولتاژ، جریان، و نشتی شار یک ماشین سنکرون با سیم پیچ میدان سه فاز، در یک توالی مرجع a-b-c بهره می گیرد. نخست، روش پیشنهاد شده با جزییات آن توسط معادلات تحلیلی توضیح داده شده، و سپس برای تعیین پارامترهای نامبرده ی یک ماشین سنکرون کوچک آزمایشگاهی بکار گرفته شده است. پارامترهای دیگر مدار معادل، با استفاده از آزمایشهای قرار دادی تعیین شده اند. اعتبار بیشتر این روش، با بکازگیری آن در دو ماشین بزرگتر با پلاک های متفاوت، انجام شده است. به علاوه، پارامترهای نامبرده ی ماشین های بزرگتر نیز با استفاده از تست های استاندارد IEEE بطور تجربی تعیین شده اند. سرانجام، یک مقایسه بین نتایج بدست آمده از روش رایج و روش ارایه شده ی ما انجام شده و روش ما ه خاطر تطابق نزدیک آن با نتایج روش اصلی، معتبر شناخته شده است.
چکیده
انرژی به دست آمده از منابع تجدید پذیر این روزها بسیار مهم شده اند، و این اساسا بدلیل سهم ناچیزشان در تولید گازهای گلخانه ای است. مساله ای که مطرح می شود این است که چطور می توان این منابع جدید را به شبکه های سنتی برق اضافه کرد، به طوری که بازده و قابلیت اطمینان این سیستم های تولید توزیع شده (DG) بیشینه شود. سخت افزار مورد نیاز برای این کار به طور کلی یک اینورتر منبع ولتاژی (VSI) است که یک بار معمولی مانند کاربردهای تک فاز مسکونی و تجاری را تامین کند. همچنین، فرآیند بهینه سازی نیازمند تجزیه تحلیل های معمولی توان می باشد. این مقاله توسعه و ارزیابی های آزمایشی یک سیستم کنترل توان برای یک VSI متصل به شبکه تک فاز، شامل تحلیل توان را، با استفاده از یک پردازشگر برای پیاده سازی کنترل یک مدار «آرایه کیت قابل برنامه ریزی میدان» (FPGA) ارایه می دهد. ساختار جدید سخت افزار شبکه عصبی خطی تطبیقی (ADALINE) ، پیاده سازی الگوریتم های سیستم قدرت را ممکن ساخته، و همچنین اجازه تحلیل زمان واقعی هارمونیک های مرتبه بالا را بدون افزایش دادن ناحیه پیاده سازی مدار FPGA، خواهد داد. این ویژگی ها برای واسط های الکترونیک قدرتی DG جدید ایده آل می باشد، که می توان از آن نه تنها برای فرستادن توان اکتیو، بلکه برای جبران سازی هارمونیک ها و توان راکتیو نیز، استفاده کرد. شبیه سازی و نتایج تجربی طرح های پیشنهادی با فرکانس های ثابت و متغیر نیز، پیوست شده اند تا اعتبار آنها مورد تاکید قرار گیرد.
اصطلاحات مربوطه: شبکه عصبی مصنوعی (ANN) ، تولید توان توزیع شده، تجزیه و تحلیل توان، آرایه های منطقی قابل برنامه ریزی، اندازه گیری توان، اعوجاج هارمونیکی کل
مقدمه
این روزها، بهره برداری عظیم از منابع انرژی توزیع شده (DER) مبنی بر منابع تجدید پذیر، برای کاهش مسایل مربوط به انتشار گاز گلخانه ای و نیز برای افزایش قابلیت اطمینان و توانایی سیستم های قدرت واقعی و آینده، بسیار مهم شده است. آنگاه، بهره برداری عظیم از DER توسط دولت ها و صنعت، در سراسر دنیا ارتقا یافته است. توسعه سیستم های با انرژی تجدیدپذیر و فن آوری های شبکه هوشمند، برای ایجاد امکان برای متصل کردن DER به سیستم های قدرت متمرکز شده سنتی، بایسته می باشد. این پیشرفت های فنی، نفوذ بالای تولید توزیع شده (DG) را موجب می شود.
چکیده
در طی مراحل پیشرفت پروژه مطالب زیر مورد بررسی قرار خواهد گرفت. در فصل اول فیزیولوژیک بدن انسان در مقابل جریان های الکتریکی بررسی شده و پیرامون مطالبی در خصوص شرایط بروز برق گرفتگی، ساختار الکتریکی بدن انسان، عوارض برق گرفتگی، جدول تأثیرات فیزیولوژیک بدن انسان در مقابل جریان های الکتریکی حوادث ثانوی شکل های حاصل از حوادث برق بحث شد.
در فصل دوم تفاوت اثرات جریان های AC,DC بر روی بدن انسان مورد بررسی قرار گرفته و پیرامون مسائلی همچون، اثر جریان های مستقیم در ولتاژهای بالا، اثر بیولوژیکی جریان متناوب، میزان اثار متناسب با فرکانس، خطر جریان متناوب نسبت به مستقیم، خطر ابتلا به بیماری سرطان برای ساکنان اطراف کابل های برق فشار قوی بررسی شده است.
فصل سوم و چهارم پیرامون مسائل حفاظتی بوده و استفاده از راه های کاهش خطر در برابر جریان های الکتریکی مورد بحث قرار گرفته که از آن جمله می توان به انواع زمین های الکتریکی، صفر کردن ها، هم پتانسیل ها و استفاده از ترانس های یک به یک یا جدا کردن حفاظتی اشاره کرد.
در فصل پنجم آئین نامه های حفاظتی مورد مطالعه قرار گرفته برای آشنایی بیشتر متخصصین با مفادهای قانونی حفاظت و موارد ایمنی، تا گامی بااشد در جهت کاهش تلفات و صدمات وارده بر انسان در برابر جریان های الکتریکی.
مقدمه
ازآنجا که با پیشرفت صنعت و تکنولوژی روز به روز تولید انرژی الکتریکی و کاربرد وسایل الکتریکی بیشتر می شود و انرژی الکتریکی جای خود را به عنوان یک انرژی برتر تثبیت کرده است به طوری که امروزه مصرف انرژی الکتریکی به عنوان یکی از شاخص های رشد صنعتی و اقتصادی کشورها محسوب می شود اما به موازات آن خطرات ناشی از برق نیز افزایش می یابد هر چند درکشورهای پیشرفته صنعتی به علت شناخته شدن این خطرات و افزایش سطح اطلاعات و کارگران صنایع، خوشبختانه صدماتی که از این طریق متوجه جوامع بشری می شود متناسب با توسعه این صنعت نیست.
به عنوان مثال در انگلستان آمار تلفات انسانی ناشیاز برق گرفتگی ظرف مدت پنجاه سال حدوداً چهار برابر شده در حالی که تولید انرژی الکتریکی در هماون مدت سی برابر افزایش یافته است، با این وجود تعداد قربانیان حوادث ناشی از جریان برق عدد قابل توجهی است و کاربرد نادرست و غیر ایمنی انرژی الکتریکی صدمات و خسارات جبران ناپذیری را بر جوامع مختلف به ویژه کشورهای در حال توسعه تحمیل می نماید.
بررسی حوادث الکتریکی نشان داده که نسبت تعداد این حوادث به کل حوادث حدود ?/? درصد است اما درصد حوادث منجر به فوت در حوادث الکتریکی بیشتر می باشد.
به طوری که حدود ??/? درصد از کل حوادث منجر به فوت هستند. در حالی که??/? درصد حوادث ناشی از برق منجر به فوت گردیده است، یعنی وخامت حوادث برق بیش از ??برابر حوادث معمولی برآورد می شود. ضمناً حوادث ناشی از برق حدود? درصد حوادث منجر به فوت در صنایع را تشکیل می دهد.
لازم به ذکر است که بیشترین حوادث برق مربوط به سیستم های جریان متناوب (بین ??-???ولت) بوده است (?/?? درصد) از طرف دیگر بررسی علل حریق ها نیز نشان داده که تقریباً عامل اصلی آتش سوزی ها، برق بوده است.
?- یک دسته کارکنان صنعت برق یا افرادی که در کارهای برق شاغل بوده و در این مدت رابطه آموزش هایی دیده اند نظیر تکنیسین های برق، اپراتورهای شاغل در مراکز برق فشار قوی، تعمیر کاران وسایل برقی از جمله افرادی هستند که به سبب حرفه خود در معرض حوادث الکتریکی قرار دارند.
?- دسته دوم، افرادی که در کارهای برقی غیرماهر بوده اما از دستگاه ها و تجهیزات الکتریکی استفاده می کنند و به علت عدم استفاده صحیح از وسایل برقی و یا خرابی قسمت های برقی دستگاه با خطر مواجه هستند.
دسته: برق
حجم فایل: 1227 کیلوبایت
تعداد صفحه: 27
یک روش جاروب رو به عقب، برای حل پخش بار در شبکه های توزیع
چکیده در اینجا، یک روش برای تجزیه و تحلیل سیستم های توزیع شعاعی یا مش شده ضعیف، که بارهای وابسته به ولتاژ را تغذیه می کنند، توسعه داده شده است. فرآیند راه حل، بصورت تکراری می باشد، و در هر مرحله، بارها از طریق امپدانس هایشان شبیه سازی شده اند. بنابراین، در هر تکرار، لازم است که یک شبکه ی ساخته شده از امپدانس ها را، حل کرد؛ براین این نوع شبکه ها، می توان همه ی ولتاژها و جریان ها را بصورت توابع خطی از یک جریان مجهول (در سیستم شعاعی) ، یا دو جریان مجهول برای هر مش مستقل (برای سیستم های مش شده) ، بیان کرد. این روش، "رو به عقب" نام گذاری شده است؛ زیرا در صورت شبکه شعاعی، معادلات تکی، و در صورت شبکه های مش، سیستم خطی معادلات _که این جریان های مجهول در قالب آنها ظاهر می شوند_ را می توان با آغاز از گره های پایانی سیستم شعاعی، یا از گره های پایانی شبکه شعاعی شده (با ایجاد برش در شبکه های مش، ایجاد می شود) ، تعیین کرد. پس از این که چکیده-وار روش b/f _که هم اکنون پرکاربردترین تکنیک برای حل شبکه های توزیع است_ را تشریح کردیم، روش شناسی راه حل ارایه شده ی خود را، هم برای سیستم های شعاعی و هم برای سیستم های مش شده (حلقه ای) ، بطور دقیق ارایه می دهیم. سپس، روشی را که با آن می توان نقاط PV را لحاظ کرد، توصیف خواهد شد.
در پایان، نتایج بدست آمده از حل برخی شبکه هایی که پیش از این در نوشتجات مورد بررسی قرار گرفته بودند، توسط دیگر روش ها ارایه می شوند، تا عملکرد آنها مورد ارزیابی قرار گیرد.
کاربرد این روش، بازده ی آن را در حل شبکه های توزیع با حلقه ها و نقاط PV زیاد، نشان می دهد.
قیمت: 16,000 تومان
خلاصه
در مدارات سیموس، کاهش ولتاژ آستانه به دلیل مقیاس بندی ولتاژ، منتهی به جریان نشتی زیرآستانه و در نتیجه تلفات توان ایستا (استاتیک) می شود. در اینجا ما روشی تازه به نام LECTOR برای طراحی گیت های سیموس که به طور قابل توجهی جریان نشتی را بدون افزایش تلفات توان پویا (دینامیک) کاهش می دهد، ارایه می کنیم. در روش پیشنهاد شده ما، دو ترانزیستور کنترل نشتی (یکی نوع n و دیگری نوع p) در درون دروازه های منطقی که ترمینال گیت هر ترانزیستور کنترل نشتی (LCT) توسط منبع گیت دیگر کنترل می شود را معرفی می کنیم. در این آرایش، یکی از LCTها (منظور ترانزیستورهای کنترل نشتی) همیشه به ازای هر ترکیب ورودی، نزدیک به ولتاژ قطع می باشد. این مقاومت مسیر Vdd به گراند را کاهش داده، که این منجر به کاهش چشمگیر جریان نشتی می شود. نت لیست سطح-گیت مدار داده شده، نخست به یک پیاده سازی گیت پیچید? CMOS استاتیک تبدیل شده، و سپس LCTها به منظور دستیابی به یک مدار کنترل نشتی معرفی می شوند. ویژگی قابل توجه LECTOR این است که در هر دو حالت فعال و غیرفعال مدار، فعال می باشد که این منجر به کاهش نشتی بهتری نسبت به روش های دیگر می شود. همچنین، روش ارایه شده، دارای محدودیت های کمتری نسبت به دیگر روش های موجود برای کاهش نشتی دارد. نتایج تجربی نشان دهند? یک کاهش نشتی متوسط 794 درصدی را برای مدارات محک (بنچ مارک) MCNC’91 نشان می دهند.
کلمات کلیدی: ریزمیکرون ژرف، نشت توان، بهینه سازی توان، پشته ترانزیستور
مقدمه
تلف توان موضوع مهمی در طراحی مدارات CMOS VLSI می باشد. مصرف توان زیاد، موجب کاهش عمر باطری در کاربردهای دارای باطری می شود و در قابلیت اطمینان، بسته ای سازی، و هزینه های خنک سازی تاثیر می گذارد. منابع اصلی تلفات توان این ها هستند: 1) تلفات توان خازنی مبنی بر شارژ و تخلی? (دشارژ) خازن بار. 2) جریان های اتصال کوتاه، بدلیل وجود یک مسیر رسانا میان منبع ولتاژ و گراند برای مدت کوتاهی در حین اینکه یک دروازه منطقی در حال عبور جریان از خود است؛ و 3) جریان نشتی. جریان نشتی شامل جریان های دیود بایاس معکوس و جریان های زیرآستانه می باشد.
چکیده
یک مساله کیفیت توان، رویدادی است که بصورت یک ولتاژ، جریان یا فرکانس غیر استاندارد آشکار می شود و منجر به یک خطا یا عملکرد نادرست تجهیزات کاربران پایانی می شود. شبکه های توزیع صنایع همگانی، بارهای صنعتی حساس و عملیات مهم تجاری، از انواع متفاوت خاموشی ها و قطع شدگی سرویس که می تواند هزینه های مالی چشمگیری را به بار آورد رنج می برند. با ساخت دوباره سیستم های قدرت و با هدایت روند به سوی تولید توزیع شده و پخش شده، مسایل کیفیت توان در حال گرفتن شکلی جدید می باشد. در کشورهای در حال توسعه مانند هند که در آن تغییرات فرکانس توان و عوامل مشکل ساز بسیار دیگر کیفیت توان به تنهایی سوالی جدی هستند و برداشتن گامی مثبت در این راستا، بسیار مهم می باشد. این مقاله، بر آن است تا مسایل برجسته در این زمینه را مشخص کرده، و ازینرو اقداماتی که می توانند موجب بهبود کیفیت توان شوند نیز، توصیه خواهند شد.
این مقاله، تکنیک های تصحیح فلش، برآمدگی و قطعی ولتاژ منبع را در یک سیستم توزیع شده، تشریح می کند. هم اکنون، گستره پهناوری از کنترل کننده های بسیار انعطاف پذیری که بر روی عناصر الکترونیک قدرت موجود جدید سرمایه گذاری می کنند، در حال توسعه برای کاربردهای توان سفارشی، می باشند. از آن میان، جبران ساز استاتیک و بازیاب دینامیکی ولتاژ، پربازده ترین وسایل هستند، که هر دوی آنها مبتنی بر اصل VSC می باشند. یک DVR (بازیاب دینامیکی ولتاژ) ، یک ولتاژ را بصورت سری به ولتاژ سیستم تزریق می کند و یک D-STATCOM یک جریان به سیستم تزریق می کند تا فلش، برآمدگی، و قطعی ولتاژ را تصحیح کنند. نتایج جامع نیز ارایه شده است تا عملکرد هر کدام از وسایل بعنوان یک راه حل توان سفارشی بالقوه، ارزیابی شود.
کلیدواژه ها: D-Statcom، DVR، افت ولتاژ، برآمدگی، قطعی، کیفیت توان، VSC
موضوع کارآموزی: دانلود گزارش کارآموزی اداره برق منطقه ای کوار (تاسیسات الکتریکی – توزیع انرژی الکتریکی – حفاظت و.) فرمت فایل: WORD (قابل ویرایش)
فهرست مطالب:
مقدمه ?
یک نمونه اتصال الکتریکی به زمین در کنار مجرای عبور آب ?
ارتباطات رادیویی ?
تاسیسات سیم کشی قدرت ?
انتقال انرژی الکتریکی ?
زمین کردن و صفر کردن در تاسیسات الکتریکی ?
زمین کردن الکتریکی سه نوع است ?
شبکه زمین ??
طراحی شبکه زمین در حالت ماندگار ??
انواع اتصالی ??
انواع رله و کاربرد آن ??
پست ??
معایب پستها با عایق گازی ??
راکتور ها ??
برق گیر ??
حفاظت ??
معرفی گرایش های پست توزیع ??
پست های سیستم انتقال ??
استخرهای قدرت الکتریکی ??
توزیع انرژی الکتریکی ??
انواع پستهای فشار قوی از نظر عملکرد ??
کلیدهای قدرت (بریکر) ??
ویژگیهای مشترک بریکرها ??
دسیکانکت (سکسیونر) : Discon nect ??
ترانسفورماتور ولتاژ: (P. T) ??
دلایل اتصال کوتاه شدن ثانوی? C. T ??
عایق های بکار رفته در C. T ها ??
آثار وقوع خطا ??
هدف از طراحی یک سیستم حفاظتی ??
مشخصات و خصوصیات سیستم حفاظت ??
تعاریف مقدماتی در رله های حفاظتی ??
رله فوق جریانی: Over Current relays ??
انواع رله های جریان زیاد از لحاظ منحنی مغناطیسی ??
مقدمه:
در مهندسی برق، واژه زمین یا ارت با توجه به کاربردهای آن دارای معانی متفاوتی است. زمین در یک مدار الکتریکی می تواند نقش یک نقطه مبدا را داشته باشد که بر طبق آن بقیه ولتاژهای الکتریکی را اندازگیری می کنند. واژه زمین همچنین به مسیری کلی برای بازگشت جریان به منبع نیز اطلاق می شود. این واژه در مورد یک اتصال مستقیم به زمین نیز مورد استفاده قرار می گیرد. یک مدار الکتریکی ممکن است به دلایل مختلفی به زمین متصل شده باشد. در مدارهای قدرت این اتصال ها معمولا برای بالا بردن ایمنی و محافظت افراد یا دستگاه ها از تاثیرات معیوب بودن عایقکاری هادی ها ایجاد می شود. اتصال به زمین در مدارهای قدرت از آسیب دیدن عایق های مدار در اثر افزایش ولتاژ بین زمین و مدار جلوگیری کرده و این ولتاژ را در یک حد معین محدود می کند. از اتصال زمین برای جلوگیری از افزایش الکتریسته ساکن در هنگام حمل مواد قابل اشتعال یا تعمیر تجهیزات الکترونیکی نیز استفاده می کنند. در برخی از انواع تلگراف و شبکه های انتقال زمین به تنهایی نقش یکی از هادی ها را ایفا می کند و به عنوان مسیر بازگشت جریان به منبع مورد استفاده قرار می گیرد با این کار در هزینه ایجاد یک خط جداگانه برای بازگشت جریان صرفه جویی می شود. در اندازگیری از زمین به عنوان یک پتانسیل الکتریکی ثابت استفاده می کنند که با توجه به اختلاف پتانسیل هر قسمت از مدار از زمین میزان پتانسیل آن قسمت را مشخص می کنند. یک زمین الکتریکی باید از ظرفیت انتقال جریان مناسبی برخوردار باشد تا بتوان از آن به عنوان مبدا صفر ولتاژ استفاده کرد.
چکیده
انتقال انرژی در یک سیستم قدرت یکپارچه با پایداری گذرا پایداری ولتاژ و پایداری سیگنال کوچک مقید شده است. این قیدها یک بهره برداری کامل از خطوط انتقال قابل دسترس را محدود می کند. سیستم انتقال انعطاف پذیر تکنولوژی است که اصلاحات مورد نیاز عوامل خطوط انتقال را به منظور بهره برداری کامل از تسهیلات خطوط انتقال موجود را فراهم می کند و از اینرو شکاف بین محدودیت پایداری و محدودیت حرارتی را به حداقل می رساند. اخیرا پژوهشگران مدلهای دینامیک را به منظور طراحی کنترل کننده های مناسب برای سیلان توان ولتاژ و کنترلرهای دمپینگ ارایه کرده اند. یک مدل خطی اصلاح شده ای از یک سیستم قدرت با نصب ارایه داده است. او نتیجه اصلی مربوط به طراحی کنترلر دمپینگ، یعنی انتخاب شرایط عملکرد قوی برای طراحی کنترلر دمپینگ را نشان داده است و انتخاب پارامترها برای بدست آوردن دمپینگ مطلوب تطبیق داده شوند. یک فرآیند سیستماتیک برای طراحی کنترلرهای دمپینگ ارایه نداده بودند. به علاوه به نظر نمی رسد تلاشی برای تعیین مناسبتر پارامتر های کنترل به منظور رسیدن به یک کنترلر قوی به عمل آورده باشد.
دسته: برق
حجم فایل: 6607 کیلوبایت
تعداد صفحه: 9
فصل اول
مقدمه
1-1- مقدمه
تعدیل پهنای پالس یا PWM به عنوان یک روشی می باشد که در آن نسبت کار یا وظیفه یک شکل موج پالسی به وسیله شکل موج ورودی دیگری کنترل می شود. تقاطع بین شکل موج ولتاژ منبع یا رفرنس و شکل موج انتقالی منجر به اتفاق افتادن زمان های باز و بسته شدن سوئیچ ها می شود.
PWM به صورت کلی و عمومی در کاربردهایی مانند کنترل کردن سرعت موتور، مبدل ها، آمپلی فایرهای صوتی و غیره مورد استفاده قرار می گیرد. برای مثال این برای کاهش دادن کل قدرت تحویل دادن یک بار بدون از دست رفتن و کاهش مورد استفاده قرار می گیرد که به صورت طبیعی در زمانی رخ می دهد که یک منبع قدرت یا برق به وسیله جز مقاومتی محدود می گردد. PWM برای تنظیم کردن ولتاژ به کار رفته برای موتور مورد استفاده قرار می گیرد. تغییر دادن نسبت وظیفه سوئیچ ها منجر به تغییر دادن سرعت موتور می گردد. پالس طولانی تر و بسته شده قابل مقایسه با دوره های باز شده می باشد که در آن قدرت بالاتری تامین کننده بار می باشد. تغییر دادن حالت بین بسته شدن (روشن) و باز شدن (خاموش) سریع می باشد و بنابراین متوسط قدرت پراکندگی در مقایسه با قدرت تحویل داده شده بسیار کم می باشد. آمپلی فایرهای PWM بسیار موثرتر و به مقدار کمتری حجیم تر در مقایسه با آمپلی فایرهای قدرت خطی هستند. علاوه بر این، آمپلی فایرهای خطی که انرژی را به صورت پیوسته در مقایسه با پالس ها تحویل می دهند دارای مقادیر قدرت حداکثری کمتری در مقایسه با آمپلی فایرهای PWM هستند.
هیچ گونه روش مجزای PWM وجود ندارد که به بهترین شکل مناسب برای همه کاربردها باشد و همچنین دارای مزیت هایی در حالت سخت و جامد ابزارهای قدرت الکتریکی و ریز فرایندها باشد، انواع مختلفی از روش های تعدیل پهنای پالس یا PWM برای کاربردهای صنعتی ارتقا یافته است. به همین دلیل، روش های PWM موضوع مطالعات متمرکز از سال 1970 بوده اند.
CHAPTER 1
INTRODUCTION
1. 1 Introduction
Pulse-width modulation (PWM) is a technique where the duty ratio of a pulsating waveform
is controlled by another input waveform. The intersections between the reference
voltage waveform and the carrier waveform give the opening and closing times of the
switches.
PWM is commonly used in applications like motor speed control، converters، audio
amplifiers، etc. For example، it is used to reduce the total power delivered to a load without
losses، which normally occurs when a power source is limited by a resistive element.
PWM is used to adjust the voltage applied to the motor. Changing the duty ratio of the
switches changes the speed of the motor. The longer the pulse is closed compared to the
opened periods، the higher the power supplied to the load is. The change of state between
closing (ON) and opening (OFF) is rapid، so that the average power dissipation is very low
compared to the power being delivered. PWM amplifiers are more efficient and less bulky
than linear power amplifiers. In addition، linear amplifiers that deliver energy continuously
rather than through pulses have lower maximum power ratings than PWM amplifiers.
There is no single PWM method that is the best suited for all applications and with advances
in solid-state power electronic devices and microprocessors، various pulse-widthmodulation
(PWM) techniques have been developed for industrial applications. For these
reasons، the PWM techniques have been the subject of intensive research since 1970s.
قیمت: 33,000 تومان