خلاصه
مسیریابی در شبکه پویا یک فعالیت چالش انگیز است، چون توپولوژی شبکه ثابت نمی باشد. این مسئله در این بررسی با استفاده از الگوریتم موریانه ای برای مد نظر قرار دادن شبکه هایی که از چنین بسته های اطلاعاتی استفاده می کنند، مطرح می گردد. مسیرهای ایجاد شده توسط الگوریتم انت (موریانه) به عنوان داده ورودی برای الگوریتم ژنتیک می باشد. الگوریتم ژنتیکی مجموعه ای از مسیرهای مناسب را پیدا می کند. اهمیت استفاده از الگوریتم موریانه ای، کاهش اندازه جدول مسیر می باشد. اهمیت الگوریتم ژنتیک بر مبنای اصل تکامل مسیرها به جای ذخیره مسیرهای از پیش محاسبه شده می باشد.
کلمات کلیدی:
مسیریابی، الگوریتم موریانه ای، الگوریتم ژنتیکی، معبر، جهش، هر یک از این موارد در زیر به بحث گذاشته می شود.
مقدمه
مسیریابی به عنوان فرایند انتقال بسته ها از گره مبدا به گره مقصد با هزینه حداقل می باشد. از این رو الگوریتم مسیریابی به دریافت، سازماندهی و توزیع اطلاعات در مورد وضعیت شبکه می پردازد. این الگوریتم به ایجاد مسیرهای عملی بین گره ها پرداخته و ترافیک داده ها را در بین مسیرهای گلچین شده ارسال کرده و عملکرد بالایی را حاصل می کند. مسیریابی به همراه کنترل تراکم و کنترل پذیرش به تعریف عملکرد شبکه می پردازد. الگوریتم مسیریابی می بایست دارای اهداف کلی از استراتژی مسیریابی بر مبنای اطلاعات سودمند محلی باشد. این الگوریتم همچنین می بایست کاربر را در مورد کیفیت خدمات راضی نگه دارد. بعضی از روش های مطرح شده برای رسیدن به این اهداف عبارتند از شبیه سازی حشرات اجتماعی و شبکه بسته شناختی. این دو روش از جدول مسیریابی احتمالات استفاده کرده و این امکان را به بسته ها می دهد تا به بررسی و گزارش توپولوژی و عملکرد شبکه بپردازند. دوریگو ام و دی کارو جی، شبکه موریانه ای را به عنوان روشی برای مسیریابی در شبکه ارتباطات مطرح می کنند. ار اسکوندر وورد، اون هالند، جانت (موریانه) بروتن و و لئون روسکرانت، در مقاله شان به بحث در مورد حاصل شدن توازن ظرفیت در شبکه های ارتباطاتی با استفاده از الگوریتم موریانه ای می پردازند. تونی وارد در مقاله تخصصی اش به شرح این موضوع می پردازد که چگونه عوامل محرک بیولوژیکی می تواند برای حل مشکلات مدیریت و کنترل در ارتباطات مورد استفاده قرار گیرد.
هدف این مقاله ایجاد راه حلی با استفاده از الگوریتم موریانه ای (استعاره حشره اجتماعی) و بهینه سازی راه حل با استفاده از الگوریتم های ژنتیکی می باشد. الگوریتم موریانه ای دسته ای از تراکم اطلاعاتی می باشد. تراکم اطلاعاتی روش جایگزینی را در ارتباط با طراحی سیستم اطلاعاتی ارائه می دهد که در آن عملیات خودگردانی، ظهور و توزیع جایگزین کنترل، پیش برنامه ریزی و تمرکز می گردد. این روش تمرکزش را بر روی توزیع، انعطاف پذیری، توانمندی و ارتباطات مستقیم و غیرمستقیم در میان عوامل نسبتا ساده قرار می دهد. الگوریتم ژنتیک به عنوان الگوریتمی می باشد که در آن جمعیت مرتبط با هر گره در مجموع برای حل مشکلات مشارکت دارد.
خلاصه
این مقاله انواع پارامترهای اساسی مدارهای مشابه دو محوری ماشین سنکرون را به منظور اشباع مغناطیسی شرح می دهد. حالت های مغناطیسی مختلف ماشین با استفاده از راه حل های مگنت استاتیک عنصر محدود حاصل می شود. بدین طریق الگوهای نفوذپذیر اجزای قابل اشباع ماشین، ذخیره و در برنام? عنصر محدود خاصی استفاده می شود که پاسخ فرکانسی ثابت (SSFR) ماشین را ایجاد می کند. سپس از الگوریتم ژنتیک هیبرید با توانایی یافت اکسترمم های کلی استفاده می شود تا به پارامترهای دو ساختار مداری مشابه در محور d برسد. این فرایند برای هر حالت مغناطیسی تکرار می شود تا اینکه انواع پارامترها مشخص شود. برای تایید حالت های مغناطیسی ماشین، ویژگی مدار باز با ویژگی محاسبه شده از مدل عنصر محدود مقایسه می شود. برای تایید، پارامترهای مدار مشابه محور d شناسایی می شود و در شبیه سازی یک ماشین سنکرون دارای اتصال کوتاه اتخاذ می شوند ونتایج ان با نتایج بدست امده از برنام? گذرای عنصر محدود مقایسه می شود.
کلمات کلیدی: پاسخ فرکانس ثابت، مدل سازی اجزای محدود، الگوریتم ژنتیک هیبرید، ماشین های سنکرون
مقدمه
پیش بینی صحیح عملکرد ماشین سنکرون گامی مهم در طراحی، تحلیل و عملکرد الکتریک سیستم های قدرت است [1]. چندین روش برای ساختن روش عملی پیچید? ماشین سنکرون بکار برده شده:
الف- مدارهای مشابه دو محور [2]، ب- مدارهای مشابه مغناطیسی [3] و ج- مدل سازی عنصر محدود [4]. اجرای روش مشابه دو محوری اسان است و نیازمند منابع کامپیوتری کمی می باشد اما بدست اوردن پارامترهای ان حتی برای کوچکترین (سنتی) مدار مشابه دو محوری [5] مشکل است. مدارهای مشابه مغناطیسی، عملکرد دائمی و گذرای ژنراتورهای سنکرون را شبیه سازی می کنند [6]. این مدارها دقیق تر از روش سنتی دومحوری هستند زیرا ماهیت توزیع شده میدان مغناطیسی درون ماشین را با دقت بیشتری توصیف می کنند. بااین وجود، دانش قبلی از مسیرهای شار برای تعیین مقاومت های مغناطیسی مدل لازم است. مدل سازی عنصر محدود [7] بعنوان یکی از قوی ترین ابزارهای شبیه سازی ژنراتور سنکرون می باشد، اما نیاز به کامپیوترهای بالاست.
چکیده-توسعهروزافزونمزارعبادیدرمقیاسبزرگدریاییدرسراسرجهانباعثظهوربسیاریازچالشهایفنیواقتصادیجدیدشده است. هزینه سرمایه شبکه برقی که از مزارع بادی بزرگ دریایی پشتیبانی می کند، بخش قابل توجهی از هزینه کل مزارع بادی را تشکیل می دهد. لذا، یافتن طراحی بهینه شبکه برق یک وظیفه خیلی مهم است که در این مقاله به آن پرداخته می شود. در این مقاله یک مدل هزینه توسعه یافته است که هزینه های دقیق تر و واقعی تر ترانسفورماتورها، پست ها و کابل ها را در بر می گیرد. همین موضوع باعث شده است مدل جدید ارائه شده نسبت به روش های موجود مبسوط تر و بهتر باشد. همچنین از یک الگوریتمی استفاده شده است که مبتنی است بر الگوریتم ژنتیک بهبودیافته و شامل الگوریتم خاصی است که حین طراحی آرایه های شعاعی، سطح مقطع های گوناگون کابل ها را هم در نظر می گیرد. رویکرد ارائه شده توسط یک مزرع بادی بزرگ دریایی آزموده شده است؛ نتایج آزمون نشان می دهد که الگوریتم معرفی شده طراحی های بهینه معتبری از شبکه برق را فراهم می کند.
کلیدواژه ها- سیستم توزیع برق، الگوریتم ژنتیک، مزرعه بادی دریایی، بهینه سازی.
پروژه کارشناسی ارشد برق
فایل محتوای:
?) اصل مقاله لاتین ? صفحه IEEE ????
?) متن ورد ترجمه شده بصورت کاملا تخصصی ?? صفحه
پایان نامه دوره کارشناسی کامپیوتر : گرایش نرم افزار
چکیده
فصل اول: مقدمه ای بر داده کاوی
1-1-مقدمه
1-2-عامل مسبب پیدایش داده کاوی
1-3-داده کاوی و مفهوم اکتشاف دانش (KDD)
1-3-1-تعریف داده کاوی
1-3-2- فرآیند داده کاوی
1-3-3-قابلیت های داده کاوی
1-3-4-چه نوع داده هایی مورد کاوش قرار می گیرند؟
1-4- وظایف داده کاوی
1-1-4-کلاس بندی
1-4-2- مراحل یک الگوریتم کلاس بندی
1-4-3-انواع روش های کلاس بندی
1-4-3-1- درخت تصمیم 1-4-3-1-1- کشف تقسیمات
1-4-3-1-2- دسته بندی با درخت تصمیم
1-4-3-1-3-انواع درخت های تصمیم
1-4-3-1-4- نحو? هرس کردن درخت
1-4-3-2- نزدیکترین همسایگی K
1-4-3-3-بیزی 1-4-3-3-1 تئوری بیز
1-4-3-3-2 -دسته بندی ساده بیزی
1-4-3-4- الگوریتم های ژنتیک در فصل دو با آن آشنا می شویم
1-4-3-5-شبکه های عصبی
1-4-4- ارزیابی روش های کلاس بندی
-2-4-1پیش بینی
1-4-3-انواع روش های پیش بینی
1-4-3-1- رگرسیون
1-4-3-1 -1- رگرسیون خطی
1-4-3-1-2-رگرسیون منطقی
1-4-3- خوشه بندی
1-4-3-1- تعریف فرآیند خوشه بندی
1-4-3-2-کیفیت خوشه بندی
1-4-3-3-روش ها و الگوریتم های خوشه بندی
1-4-3-3-1-روش های سلسله مراتبی
1-4-3-3-1-1- الگوریتم های سلسله مراتبی
1-4-3-3-1-1-1-الگوریتم خوشه بندی single-linkage
1-4-3-3-2-الگوریتم های تفکیک
1-4-3-3-3-روش های متکی برچگالی
1-4-3-3-4-روش های متکی بر گرید
1-4-3-3-5-روش های متکی بر مدل
1-4-4- تخمین
1-4-4-1- درخت تصمیم
1-4-4-2- شبکه عصبی
1-4-5-سری های زمانی
1-5-کاربردهای داده کاوی
1-6-قوانین انجمنی
1-6-1-کاوش قوانین انجمنی
1-6-2-اصول کاوش قوانین انجمنی
1-6-3-اصول استقرا در کاوش قوانین انجمنی
1-6-4-الگوریتم Apriori
1-7-متن کاوی
1-7-1- مقدمه
1-7-2- فرآیند متن کاوی
1-7-3- کاربردهای متن کاوی
1-7-3-1- جستجو و بازیابی
1-7-3-2-گروه بندی و طبقه بندی داده
1-7-3-3-خلاصه سازی
1-7-3-4- روابط میان مفاهیم
1-7-3-5- یافتن و تحلیل ترند ها
1-7-3-5- برچسب زدن نحوی (POS)
1-6-2-7-ایجاد تزاروس و آنتولوژی به صورت اتوماتیک
1-8-تصویر کاوی
1-9- وب کاوی
فصل دوم: الگوریتم ژنتیک
1-2-مقدمه
2-2-اصول الگوریتم ژنتیک
2-2-1-کد گذاری
2-2-1-1-روش های کد گذاری
2-2-1-1-1-کدگذاری دودویی
2-2-1-1-2-کدگذاری مقادیر
2-2-1-1-3-کدگذاری درختی
2-2-2- ارزیابی
2-2-3-انتخاب
2-2-3-1-انتخاب گردونه دوار
2-2-3-2-انتخاب رتبه ای
2-2-3-3-انتخاب حالت استوار
2-2-3-4-نخبه گزینی
2-2-4-عملگرهای تغییر
2-2-4-1-عملگر Crossover
2-2-4-2-عملگر جهش ژنتیکی
2-2-4-3-احتمالCrossover و جهش
2-2-5-کدبرداری
2-2-6-دیگر پارامترها
2-4-مزایای الگوریتم های ژنتیک
2-5- محدودیت های الگوریتم های ژنتیک
2-6-چند نمونه از کاربرد های الگوریتم های ژنتیک
2-6-1-یک مثال ساده
فصل سوم: شبکه های عصبی
3-1-چرا از شبکه های عصبی استفاده می کنیم؟
3-2-سلول عصبی
3-3-نحوه عملکرد مغز
3-4-مدل ریاضی نرون
3-5-آموزش شبکه های عصبی
3-6-کاربرد های شبکه های عصبی
فصل چهارم: محاسبات نرم
4-1-مقدمه
4-2-محاسبات نرمچیست؟
4-2-1-رابطه
4-2-2-مجموعه های فازی
4-2-2-1-توابع عضویت
4-2-2-2- عملیات اصلی
4-2-3-نقش مجموعه های فازی در داده کاوی
4-2-3-1- خوشه بندی
4-2-3-2- خلاصه سازی دادهها
4-2-3-3- تصویر کاوی
4-2-4- الگوریتم ژنتیک
4-2-5-نقش الگوریتم ژنتیک در داده کاوی
4-2-5-1- رگرسیون
4-2-5-2-قوانین انجمنی
4-3-بحث و نتیجه گیری
فصل پنجم: ابزارهای داده کاوی
5-1- نحوه انتخاب ابزارداده کاوی
5-2-1-ابزار SPSS-Clemantine
5-2-3-ابزار KXEN
5-2-4-مدل Insightful
5-2-5-مدل Affinium
5-3- چگونه می توان بهترین ابزار را انتخاب کرد؟
5-4-ابزار های داده کاوی که در 2007 استفاده شده است
5-5-داده کاوی با sqlserver 2005
5-5-1-اتصال به سرورازمنوی
5-5-2- ایجاد Data source
5-5-3- ایجاد Data source view
5-5-4- ایجاد Mining structures
5-5-5- Microsoft association rule
5-5-6- Algorithm cluster
5-5-7- Neural network
5-5-8-Modle naive-bayes
5-5-9-Microsoft Tree Viewer
5-5-10-Microsoft-Loistic-Regression
5-5-11-Microsoft-Linear-Regression
فصل ششم: نتایج داده کاوی با SQL SERVER2005 روی بانک اطلاعاتی دانشگاه آزاد قوچان
•1-6-نتایج Data Mining With Sql Server 2005 روی بانک اطلاعاتی دانشگاه آزاد قوچان
1-6-1-Microsoft association rule
1-6-2- Algorithm cluster
1-6-3- Neural network
1-6-4- Modle naive-bayes
1-6-5-Microsoft Tree Viewer
7-1-نتیجه گیری
منابع و ماخذ
چکیده
مسیریابی در شبکه پویا یک فعالیت چالش انگیز است، چون توپولوژی شبکه ثابت نمی باشد. این مسئله در این بررسی با استفاده از الگوریتم مورچه ای برای مد نظر قرار دادن شبکه هایی که از چنین بسته های اطلاعاتی استفاده می کنند، مطرح می گردد. مسیرهای ایجاد شده توسط الگوریتم انت (مورچه) به عنوان داده ورودی برای الگوریتم ژنتیک می باشد. الگوریتم ژنتیکی مجموعه ای از مسیرهای مناسب را پیدا می کند. اهمیت استفاده از الگوریتم مورچه ای، کاهش اندازه جدول مسیر می باشد. اهمیت الگوریتم ژنتیک بر مبنای اصل تکامل مسیرها به جای ذخیره مسیرهای از پیش محاسبه شده می باشد.
کلیدواژه: مسیریابی، الگوریتم مورچه ای، الگوریتم ژنتیکی، معبر، جهش، هر یک از این موارد در زیر به بحث گذاشته می شود.
مقدمه
مسیریابی به عنوان فرایند انتقال بسته ها از گره مبدا به گره مقصد با هزینه حداقل می باشد. از این رو الگوریتم مسیریابی به دریافت، سازماندهی و توزیع اطلاعات در مورد وضعیت شبکه می پردازد. این الگوریتم به ایجاد مسیرهای عملی بین گره ها پرداخته و ترافیک داده ها را در بین مسیرهای گلچین شده ارسال کرده و عملکرد بالایی را حاصل می کند. مسیریابی به همراه کنترل تراکم و کنترل پذیرش به تعریف عملکرد شبکه می پردازد. الگوریتم مسیریابی می بایست دارای اهداف کلی از استراتژی مسیریابی بر مبنای اطلاعات سودمند محلی باشد. این الگوریتم همچنین می بایست کاربر را در مورد کیفیت خدمات راضی نگه دارد. بعضی از روش های مطرح شده برای رسیدن به این اهداف عبارتند از شبیه سازی حشرات اجتماعی و شبکه بسته شناختی. این دو روش از جدول مسیریابی احتمالات استفاده کرده و این امکان را به بسته ها می دهد تا به بررسی و گزارش توپولوژی و عملکرد شبکه بپردازند. دوریگو ام و دی کارو جی، شبکه مورچه ای را به عنوان روشی برای مسیریابی در شبکه ارتباطات مطرح می کنند. ار اسکوندر وورد، اون هالند، جانت (مورچه) بروتن و لئون روسکرانت، در مقاله شان به بحث در مورد حاصل شدن توازن ظرفیت در شبکه های ارتباطاتی با استفاده از الگوریتم مورچه ای می پردازند. تونی وارد در مقاله تخصصی اش به شرح این موضوع می پردازد که چگونه عوامل محرک بیولوژیکی می تواند برای حل مشکلات مدیریتو کنترل در ارتباطات مورد استفاده قرار گیرد. هدف این مقاله ایجاد راه حلی با استفاده از الگوریتم مورچه ای (استعاره حشره اجتماعی) و بهینه سازی راه حل با استفاده از الگوریتم های ژنتیکی می باشد. الگوریتم مورچه ای دسته ای از تراکم اطلاعاتی می باشد. تراکم اطلاعاتی روش جایگزینی را در ارتباط با طراحی سیستم اطلاعاتی ارائه می دهد که در آن عملیات خودگردانی، ظهور و توزیع جایگزین کنترل، پیش برنامه ریزی و تمرکز می گردد. این روش تمرکزش را بر روی توزیع، انعطاف پذیری، توانمندی و ارتباطات مستقیم و غیرمستقیم در میان عوامل نسبتا ساده قرار می دهد. الگوریتم ژنتیک به عنوان الگوریتمی می باشد که در آن جمعیت مرتبط با هر گره در مجموع برای حل مشکلات مشارکت دارد.
مقدمه
هوش محاسباتی یا (Computational-Intelligence) CI به معنای استخراج هوش، دانش، الگوریتم یا نگاشت از دل محاسبات عددی براساس ارائه به روز داده های عددی است. سیستم هایCI در اصل سیستم های دینامیکی مدل آزاد (Model-free) را برای تقریب توابع و نگاشتها ارائه می کند. در کنار این ویژگی بسیار مهم باید از ویژگی مهم دیگری در ارتباط با خصوصیات محاسباتی سیستم های CI نام برد، که در آن دقت، وجه المصالحه مقاوم بودن، منعطف بودن و سهولت پیاده سازی قرار می گیرد.
مولفه های مهم و اساسی CI، شبکه های عصبی) محاسبات نورونی (، منطق فازی) محاسبات تقریبی (و الگوریتم ژنتیک) محاسبات ژنتیکی (است، که هر یک به نوعی مغز را الگو قرار داده اند. شبکه های عصبی ارتباطات سیناپسی و ساختار نورونی، منطق فازی استنتاجات تقریبی و محاسبات ژنتیکی محاسبات موتاسیونی مغز را مدل می کنند.
هوش مصنوعی:
در شبکه ارتباطی مغز انسانها سیگنالهای ارتباطی به صورت پالسهای الکتریکی هستند. جزء اصلی مغز نرون است که از یک ساختمان سلولی و مجموعه ای از شیارها و خطوط تشکیل شده و شیارها محل ورود اطلاعات به نرون هستند وخطوط محل خروج اطلاعات از نرون اند. نقطه اتصال یک نرون به نرون دیگر را سیناپس می نامند که مانند دروازه یا کلید عمل می کنند. اگر واکنشهایی که میلیونها نرون مختلف به پالسهای متفاوت نشان میدهند با یکدیگر هماهنگ باشند ممکن است پدیده های مهمی در مغز رخ دهد.
آن دسته از پژوهشگران هوش مصنوعی که رویکرد مدل مغزی را دنبال می کنند گونه ای از مدارهای الکتریکی را طراحی کرده اند که تا حدی شبکه مغز را شبیه سازی میکند در این روش هر گره (نرون) به تنهایی یک پردازنده است ولی رایانه های معمولی حداکثر چند cpuدارند هدف عمده کامپیوتر شبکه عصبی این است که مکانیسمی طراحی کند که همانند مغز انسان بازخورد مثبت یاد بگیرد پاسخهای درست و نادرست کدامند.
سیستم شبکه عصبی این کار را از طریق ارزشگذاری کمی برای ارتباطات سیگنالها بین نرونها انجام میدهد مکانیسم ارزشگذاری توسط مقاومتها با تقویت یا تضعیف پالسها انجام میشود. چون شبکه های عصبی میلیونها نرون دارند خرابی تعدادی از آنها تاثیر چندانی برعملکرد سیستم نمی گذارد تا کنون چند سیستم آزمایشی با استفاده از این اصول طراحی و ساخته شده اند مثلاًدر بررسی های زیست محیطی، شبکه های عصبی برای جمع آوری و تحلیل اطلاعاتی که از راه دور حس شده اند مورد استفاده قرار می گیرند اطلاعاتی که اغلب سفینه ها مخابره می کنند بسیار حجیم است. شبکه های عصبی این اطلاعات را به راحتی دسته بندی کرده وپس از جمع آوری اطلاعات ذهنی و تجسمی نتایج جالبی به دست می آورند (مثلاًتشخیص انواع خاصی از ابرها) البته این فرایند با آنچه سیستم های خبره انجام می دهند متفاوت است زیرا این سیستم ها ابزارهای تصمیم سازی هستند و می توانند حجم زیادی از اطلاعات را به سرعت تحلیل کنند شبکه های عصبی برای مدل سازی فرایندهای فکری مغزی که زمین? دیگری برای مطالعات حساس به اطلاعات و پیچیدگی است مورد استفاده قرار گرفته است.
دسته: برق
حجم فایل: 834 کیلوبایت
تعداد صفحه: 18
کنترل تولید اتوماتیک چهار-ناحیه ای مبنی بر محاسبه تکاملی در محیط تجدید ساختار شده
چکیده در این مقاله، کنترل تولید خودکار چند-واحد چهار-ناحیه ای، در سیستم تجدید ساختار شده، بررسی می شود. انواع مختلفی از خدمات جانبی در سیستم قدرت، وجود دارد. یکی از این خدمات جانبی، تبعیت بار با کنترل فرکانس می باشد، که در دسته بندی گسترده ی کنترلِ تولیدِ اتوماتیک، در سیستم قدرت تجدید ساختار شده، قرار می گیرد. هدف اصلی این مقاله، معرفی چند تکنیک تازه مبتنی بر محابسه تکاملی می باشد که بصورت مستقل برای بدست آوردن پارامترهای بهره بهینه برای عملکردهای گذرای بهینه تحت شرایط عملیاتی مختلف سیستم، بکار می روند. نتایج محاسباتی و عملکردهای گذرا، مقایسه می شوند تا در پایان، بهترین روش بهینه سازی برای این مساله، بدست آید. با انجام مقایسه ها، ثابت شده است که یک الگوریتم جدید مبتنی بر تجمع ذرات، بنام بهینه سازی تجمع و بی نظمی اصلاح شده (MCASO) ، و الگوریتم ژنتیک با کد حقیقی (RGA) ، بهترین آنها می باشند. PSO مرسوم و الگوریتم ژنتیک با کد باینری (دودویی) ، دو تکنیک بعدی می باشند که عملکردهای زیربهینه را بدست می دهند. یک DISCO (شرکت توزیع) می تواند بصورت انفرادی و نیز چند-جانبه با یک GENCO (شرکت تولید کننده) برای توان معامله کند، و این معاملات، تحت نظر ISO صورت می پذیرند. در این مقاله، از مفهوم ماتریس مشارکت DISCO برای شبیه سازی معامله های دو-جانبه در نمودار چهار-ناحیه ای، استفاده شده است. مقادیر محاسبه شده مشارکت ژنراتور و مبادلات توان خط ارتباطی، مطابق با مقادیر حقیقی مربوطه که توسط MATLAB-SIMULINK بدست آمده است، می باشد. پاسخ های گذرای بهینه، با جایگزین کردن بهره های بهینه در دیاگرام چند-واحد چهار-ناحیه ای مبنی بر MATLAB-SIMULINK، بدست می آیند.
کلیدواژه ها AGC، BGA، قراردادهای (معاملات) دوجانبه، MCASO، PSOCFA، سیستم قدرت تجدید ساختار شده، RGA، SFL.
پروژه کارشناسی ارشد برق
فایل محتوای:
1) اصل مقاله لاتین 6 صفحه IEEE
2) متن ورد ترجمه شده بصورت کاملا تخصصی 18 صفحه
قیمت: 17,000 تومان
چکیده
در این مقاله، کنترل تولید خودکار چند واحد چهار ناحیه ای، در سیستم تجدید ساختار شده، بررسی می شود. انواع مختلفی از خدمات جانبی در سیستم قدرت، وجود دارد. یکی از این خدمات جانبی، تبعیت بار با کنترل فرکانس می باشد، که در دسته بندی گسترده کنترلِ تولید اتوماتیک، در سیستم قدرت تجدید ساختار شده، قرار می گیرد. هدف اصلی این مقاله، معرفی چند تکنیک تازه مبتنی بر محابسه تکاملی می باشد که به صورت مستقل برای به دست آوردن پارامترهای بهره بهینه برای عملکردهای گذرای بهینه تحت شرایط عملیاتی مختلف سیستم، به کار می روند. نتایج محاسباتی و عملکردهای گذرا، مقایسه می شوند تا در پایان، بهترین روش بهینه سازی برای این مساله، به دست آید. با انجام مقایسه ها، ثابت شده است که یک الگوریتم جدید مبتنی بر تجمع ذرات، بنام بهینه سازی تجمع و بی نظمی اصلاح شده (MCASO) ، و الگوریتم ژنتیک با کد حقیقی (RGA) ، بهترین آنها می باشند. PSO مرسوم و الگوریتم ژنتیک با کد باینری (دودویی) ، دو تکنیک بعدی می باشند که عملکردهای زیربهینه را به دست می دهند. یک DISCO (شرکت توزیع) می تواند به صورت انفرادی و نیز چند جانبه با یک GENCO (شرکت تولید کننده) برای توان معامله کند، و این معاملات، تحت نظر ISO صورت می پذیرند. در این مقاله، از مفهوم ماتریس مشارکت DISCO برای شبیه سازی معامله های دو جانبه در نمودار چهار ناحیه ای، استفاده شده است. مقادیر محاسبه شده مشارکت ژنراتور و مبادلات توان خط ارتباطی، مطابق با مقادیر حقیقی مربوطه که توسط MATLAB SIMULINK به دست آمده است، می باشد. پاسخ های گذرای بهینه، با جایگزین کردن بهره های بهینه در دیاگرام چند واحد چهار ناحیه ای مبنی بر MATLAB SIMULINK، به دست می آیند.
کلیدواژگان: AGC، BGA، قراردادهای (معاملات) دوجانبه، MCASO، PSOCFA، سیستم قدرت تجدید ساختار شده، RGA، SFL