خلاصه
ما سیستم کشف اطلاعات مبتنی بر آمیب یا سیستم داده کاوی را مطرح می کنیم که با استفاده از ارگانیسم آمیبی شکل و سیستم کنترل مرتبط به آنبه اجر در می آید. سیستم امیب به عنوان یکی از الگوهای محاسباتی غیرسنتی جدید مد نظر قرار گرفته، که می تواند محاسبات موازی انبوه و پیچیده ای را انجام داده که ازفعالیت های پیچیده امیب اسنفاده می کند. سیستم مورد نظر ما ترکیبی از واحدهای سنتی مبتنی بر اطلاعات بوده که بر روی کامپیوترهای معمولی و واحد جستجوی مبتنی بر امیب با رابط واحد کنترل امیب به اجرا در می آید. راه حل ها در سیستم ما دارای مسیردهی یک به یک نسبت به راه حل های شناخته شده دیگر همانند شبکه های عصبی و الگوریتم های ژنتیکی می باشد. این قابلیت مسیردهی، چنین امکانی را برای امیب ایجاد می کند تا تکنیک هایی را که در حوزه های دیگر ایجاد شده است بکار گرفته و مورد استفاده قرار دهد. شکل های مختلفی از مراحل کشف اطلاعات معرفی شده اند. همچنین انواع جدیدی از تکنیک کشف اطلاعات به نام " حل مسئله مستقل" مورد بحث قرار می گیرد.
کلمات کلیدی: محاسبات مبتنی بر امیب؛ کشف اطلاعات؛ داده کاوی؛ الگوی محاسباتی جدید
مقدمه
کشف اطلاعات- یعنی مفهوم کامپیوترهایی که بطور اتوماتیک اطلاعات مفیدی را جستجو می کنند به عنوان یک جنبه جذاب و نوید بخش برنامه های کاربردی به منظور کاربرد عملی آن می باشد.
الگوهای محاسباتی جدید- در 40 سال گذشته سخت افزار کامپیوتر تحت سلطه CMOS سنتی یا مدارهای مجتمع مبتنی بر سیلیکون بوده است (که همچنین به نام معماری مبتنی بر سیلیکون می باشد). امروزه، مفاهیم معماری کامپیوتر بر مبنای اصول کلی جدید به غیر از فناوری مبتنی بر سیلیکون توجه زیادی را به سمت خود جلب کرده است. این مقاله طرح کشف اطلاعات را مطرح می کند که از سیستم مبتنی بر امیب، که یکی از الگوهای محاسباتی جدید می باشد، مطرح می کند.
جریان داده
.بسیاری از برنامه های کاربردی نوع داده جدیدی به نام جریان داده را تولید و تحلیل می کنند که در آن داده ها به صورت پویا به یک بستر (یا پنجره) وارد و یا از آن خارج می شوند.
.خواص جریان داده:
.حجم زیاد و گاه نامحدود
.تغییرپویا
.جریان به درون و خارج با یک ترتیب مشخص
.پیمایش یکبار یا تعدا د محدود
.نیازمند زمان پاسخ سریع (اغلب بلادرنگ)
.ممکن است دارای چندین منبع باشند.
چکیده
کشف تناوبی داده های سری زمانی به عنوان مسئله مهمی در بسیاری از برنامه های کاربردی می باشد. اکثر تحقیقات پیشین تمرکز خود را بر روی بررسی الگوهای تناوبی اسنکرون قرار داده و حضور الگوهای ناهمتراز را به دلیل مداخله پارازیت های تصادفی مد نظر قرار نمی دهد. در این مقاله، مدل انعطاف پذیرتری را در ارتباط با الگوهای تناوبی اسنکرون مطرح می کنیم که تنها درون توالی مد نظر قرار گرفته و وقوع آن ها به دلیل وجود این اختلالات تغییر می یابد. دو پارامتر min-rep و max-dis،به کار گرفته می شوند تا به تعیین حداقل تعداد تکرارها بپردازیم که در هر بخش از ظهور الگوها غیرمختل و حداکثر اختلال بین دو بخش معتبرمتوالی، مورد نیاز می باشد. بعد از برطرف شدن این دو شرایط، بلندترین توالی معتبر الگو، برگشت داده می شود. یک الگوریتم دو مرحله ای طراحی می گردد تا در ابتدا به ایجاد دوره های بلقوه از طریق برش مبتنی بر مسافت به دنبال روش تکرار برای دسترسی و ایجاد اعتبار برای الگوهاو مکان یابی طولانی ترین توالی معتبر بپردازد. ما همچنین نشان می دهیم که این الگوریتم نه تنها پیچیدگی های زمانی طولی را با توجه به طول توالی ها ایجاد می کند بلکه دسترسی به بهره وری فضا دارد.
کلیدواژه: الگوهای تناوبی اسنکرون، روش مبتنی بر بخش، تناوب نسبی
مقدمه
تشخیص تناوبی در ارتباط با اطلاعات سری زمانی به عنوان یک مسئله چالش انگیز می باشد که دارای اهمیت مهمی در بسیاری از کاربردها می باشد.بیشتر تحقیقات گذشته در این دوره بر این مبنا می باشد که اختلالات در یک سری از تکرار الگوها، منجر به عدم همزمان سازی وقوع متوالی الگوها با توجه به رویدادهای گذشته نمی گردد. برای نمونه، "جو اسمیت هر روز روزنامه می خواند" به عنوان یک الگوی تناوبی می باشد. حتی اگر او هر از گاهی در صبحگاه روزنامه نخواند، چنین اختلالی این حقیقت را تحت تاثیر قرار نمی دهد که او در صبح چند روز متوالی روزنامه می خواند. به عبارت دیگر، این اختلالات تنها در ارتباط با وقوع مشکلات پیش می آید اما این موارد معمول تر از ورود پارازیت های تصادفی نمی باشد. به هر حال چنین فرضیاتی اغلب محدود کننده بوده از این رو ما ممکن است نتوانیم به تشخیص بعضی از الگوها بپردازیم اگر بعضی از این توالی ها به دلیل وجود پارازیت ها، دچار اختلال گردند. کاربردهای مربوط به پر کردن موجودی ها را مد نظر قرار دهید. پیشینه مربوط به سفارشات صورت های موجود به عنوان یک توالی مد نظر قرار می گیرد. تصور کنید، که فاصله زمانی بین اشباع داروها به طور نرمال، ماهانه باشد. شیوه های مربوط به اشباع سازی در شروع هر ماه قبل از شروع آنفولانزا مد نظر قرار می گیرد که در نهایت منتهی به فرایند اشباع سازی در هفته سوم می گردد. به این ترتیب اگر چه این بسامد اشباع سازی, در هر ماه تکرار می گردد، این زمان به سه هفته در ماه منتهی می گردد. از این رو، این مورد زمانی مد نظر قرار می گیرد که این الگوها قابل تشخیص بوده و این اختلالات در یک حد مطلوبی باشد.
چکیده
افراد تحصیل کرده و شاغل معمولاً علاقه دارند توسعه روش ها و برنامه های کامپیوتری را که با کارهای مهندسی و دانش سر و کار دارند دنبال کنند. مدیریتاشتباه عملیات و زمان های تولید از دست رفته، مشکلات و مسائل بزرگی هستند که بهره وری و کیفیت سیستم های صنعتی و هزینه تولید را تحت تأثیر قرار می دهد. استخراج قوانین وابستگی، یک تکنیک داده کاوی است که برای پیدا کردن اطلاعات مفید و ارزشمند از پایگاه های داده بزرگ استفاده می شود. این مقاله، پایه مفهومی بهتری را برای توسعه برنامه های استخراج قوانین وابستگی ارائه می دهد تا دانش را از عملیات و مدیریت اطلاعات به راحتی استخراج کند. تأکید این مقاله روی بهبود فرایندهای عملیاتی است. یک مثال کاربردی، تجربه صنعتی که استخراج قوانین وابستگی در آن برای تحلیل فرایند تولید استفاده می شود را شرح می دهد. این مقاله برخی نتایج جدید و جالب در رابطه با تکنیک های داده کاوی و کشف دانش که روی فرایند تولید نقش دارد را گزارش می دهد. نتایج تجربی روی داده هایی که در زندگی واقعی نقش دارند نشان می دهد که روش پیشنهادی برای یافتن دانش مرتبط با عملیات نادرست مفید واقع می شود.
مقدمه
کاربردهای مهندسی هوش مصنوعی نظرات محققین و شاغلین حوزه صنعت را به دلیل توانایی آن در یادگیری و درک اصول و حقایق به منظور کسب دانش و به کارگیری آن در عمل به خود جلب کرده است. پیشرفت های مداوم، اشاره به پیشرفت های رو به جلو و غیر منتظره در زمینه عملکرد سازمانی دارد (Linderman, Schroeder, Zaheer, Liedtke, & Choo, 2004). پیشرفت در مسائلی مانند افزایش ارزش مشتری، کاهش خطاها و عیوب، بهره وری بهبود یافته، امنیت عملکرد چرخه زمانی و انگیزش (Evans & Lindsay, 2001). این مورد معمولاً در روش حل تدریجی مسئله رخ می دهد که شامل مراحل ضمنی سازی مسئله، تحلیل مسئله، تعمیم راه حل و یادگیری دروس است (Kamsu-Foguem, Coudert, Geneste, & Beler, 2008). روش حل مسئله، روی توصیف فرایند شناختی در کارهای عقلانی و ملاحظات شناختی که با سرمایه گذاری دانش روی ساختارهای خاص و قدرت بخشی به تعمیم سر و کار دارد تمرکز می کند (Patel, Arocha, &Kaufman, 2001). روش های حل مسئله نقش مهمی را در اکتساب دانش و مهندسی بازی می کند زیرا سطح دانش انتزاعی برای نیل به اهداف با اعمال دانش توسط فرایند تدریجی جستجوی مسیر راه حل بسیار ارزشمند است. از این روش ها می توان برای توصیف فرایند استدلال به صورت ساختاری برای هدایت روند کسب دانش و راحت کردن تقسیم دانش و استفاده مجدد بهره جست (Benjamins & Fensel, 1998).