خلاصه
در این پژوهش، دو الگوریتم خوشه بندی جدید را معرفی می کنیم. شبکه اموزشی رقابتی پیشرفته (ICLN) و شبکه آموزشی رقابتی پیشرفته نظارتی (SICLN) که در زمینه تشخیص کلاهبرداری و تشخیص نفوذ شبکه در می باشند. شبکه اموزشی رقابتی پیشرفته (ICLN) به عنوان الگوریتم خوشه بندی غیرنظارتی می باشد، که قوانین جدیدی را برای شبکه های عصبی آموزشی رقابتی استاندارد (SCLN) اعمال می کند. نورون های شبکه در شبکه آموزشی رقابتی پیشرفته (ICLN) برای ارائه مرکز داده توسط قوانین بروز شده تنبیه و پاداش جدید آموزش دیده اند. این قوانین بروز شده، بی ثباتی شبکه های عصبی آموزشی رقابتی استانداردSCLN)) را از بین می برند. شبکه آموزشی رقابتی یشرفته نظارتی (SICLN) به عنوان نسخه بازبینی شده شبکه اموزشی رقابتی پیشرفته (ICLN) می باشد. در SICLN (شبکه آموزشی رقابتی یشرفته نظارتی (SICLN) ، قوانین بروزرسانی شده نظارتی از دسته بندی داده برای هدایت مراحل آموزش برای دسترسی به نتایج خوشه بندی بهتر استفاده می کند. شبکه آموزشی رقابتی پیشرفته نظارت شده می تواند برای داده های دسته بندی شده و دسته بندی نشده اعمال شده و در سطح بالایی در برابر اتیکت های مفقودی و تاخیری مقاوم می باشد. علاوه بر این، شبکه آموزشی رقابتی یشرفته نظارتی (SICLN) دارای قابلیت بازسازی بوده، بنابراین کاملا مستقل از تعداد اولیه خوشه ها می باشد.
برای ارزیابی الگوریتم های مورد نظر، به مقایسه عملی در مورد داده های تحقیق و داده های حقیقی در تشخیص کلاهبرداری و تشخیص نفوذ شبکه پرداختیم. نتایج اثبات می کند که هر دو مورد ICLN و SICLN به بایگانی عملکرد بالا می پردازند، و SICLN در الگوریتم های خوشه بندی غیرنظارتی سنتی عملکرد بهتری دارد.
کلمات کلیدی: آموزش رقابتی، شناسایی کلاهبرداری، شناسایی نفوذ، خوشه بندی نظارتی/ غیر نظارتی، شبکه عصبی
مقدمه تشخیص کلاهبرداری و تشخیص نفوذ در شبکه در کسب و کار تجارت الکترونیک بسیار مهم می باشد. بر طبق به گزارش های تجارت الکترونیک فروش اداره سرشماری ایالات متحده، تجارت الکترونیک در امریکای شمالی دارای رشد 20% یا بیشتر در هر سال می باشد. به هر حال کلاهبرداری در شرکت های تجارت الکترونیک ایالات متحده و کانادا منجر به هزینه تلفات زیادی شده است. با توجه به رشد اخیر در تجارت الکترونیک، کلاه برداری در زمینه کارت های اعتباری بسیار رایج شده است. بر مبنای نتایج بررسی در سال 2009، به طور متوسط، 1.6% از سفارشات بر مبنای کلاه برداری بوده، که حدود 3.3 میلیارد دلار می باشد. علاوه بر ضررهای مستقیمی که از طریق فروش های کلاهبرداری انجام شده است، اعتماد قربانیان کلاهبرداری در زمینه کارت های اعتباری و شرکت خرده فروش کمتر شده، که در نتیجه ضرر ها نیز افزایش یافته است. هدف شرکت ها و صادر کنندگان کارت های اعتباری این است تا هر چه زودتر به افشا یا جلوگیری از کلاه برداری بپردازند. از طرف دیگر نفوذ به شبکه، از پشت به شرکت های تجارت الکترونیک ضربه می زند. زمان وقفه سرورهای وب یا نفوذ به اطلاعات یا کسب و کار مشتری منجر به ضررهای زیادی می گردد.
چکیده
در این مقاله روش آموزش نظارت جدید برای ارزیابی چگونگی شبکه های Feed Forward عصبی تک لایه ارائه می شود. این روش از تابع هدفی بر مبنای MSE استفاده می کند، که خطاها را به جای این که پس از تابع فعالسازی غیرخطی نورون ها ارزیابی کند قبل از آن ها بررسی می کند. در این گونه موارد، راه حل را می توان به سهولت از طریق حل معادلات در سیستم های خطی به دست آورد یعنی در این روش نسبت به روش های معین و مرسوم پیشین به محاسبات کمتری نیاز است. تحقیقات تئوری شامل اثبات موازنه های تقریبی بین بهینه ستزی سراسری تابع هدف بر مبنای معیار MSE و یک تابع پیشنهادی دیگر می باشد. بعلاوه مشخص شده است که این روش قابلیت توسعه و توزیع آموزش را دارا می باشد. طی تحقیقات تجربی جامع نیز تنوع صحت در انرمان این روش مشخص شده است. این تحقیق شامل 10 دسته بندی و 16 مسئله بازگشتی می باشد. بعلاوه، مقایسه این روش با دیگر الگوریتم های آموزشی با عملکرد بالا نشان می دهد که روش مذکور بطور متوسط بیشترین قابلیت اجرایی را داشته و به حداقل محاسبات در این روش نیاز می باشد.
مقدمه
برای بررسی شبکه عصبی Feed Forward تک لایه با تابع فعالسازی خطی، مقادیر وزن برای تابع به MSE حداقل رسیده و می توان این مقادیر را به وسیله یک ماتریس شبه معکوس بدست آورد [1,2]. بعلاوه، می توان اثبات کرد که سطح MSE این شبکه خطی تابعی درجه دوم می باشد [3]. بنابراین این سطح محدب هایپرپارابولیک (فراسهمی وار) را می توان به سادگی با روش گرادیان نزولی (Gradient descent) طی کرد. با این حال، اگر از تابع فعالسازی غیر خطی استفاده شود، مینیمم های محلی می توانند بر مبنای معیار MSE در تابع هدف دیده شوند [4-6]. طی تحقیقات مختلف می توان مشاهده نمود که تعداد چنین مینیمم هایی می توانند با ابعاد ورودی به صورت نمایی توسعه پیدا کند. تنها در برخی موارد خاص می توان تضمین کرد که شرایط حاکم، فاقد Min های محلی هستند. در مورد الگوهای تفکیک پذیرخطی و معیار آستانه MSE، وجود حداقل یک مقدار Min در تابع هدف به اثبات رسیده است [8,9]. با این حال، این امر یک موقعیت عمومی نمی باشد.
خلاصه
انرژی بدست آمده از منابع تجدید پذیر این روزها بسیار مهم شده اند، و این اساسا بدلیل سهم ناچیزشان در تولید گازهای گلخانه ای است. مساله ای که مطرح می شود این است که چطور می توان این منابع جدید را به شبکه های سنتی برق اضافه کرد، بطوری که بازده و قابلیت اطمینان این سیستم های تولید توزیع شده (DG) بیشینه شود. سخت افزار مورد نیاز برای این کار بطور کلی یک اینورتر منبع ولتاژی (VSI) است که یک بار معمولی مانند کاربردهای تک-فاز مسکونی و تجاری را تامین کند. همچنین، فرآیند بهینه سازی نیازمند تجزیه تحلیل های معمولی توان می باشد. این مقاله توسعه و ارزیابی های آزمایشی یک سیستم کنترل توان برای یک VSI متصل به شبکه تک-فاز، شامل تحلیل توان را، با استفاده از یک پردازشگر برای پیاده سازی کنترل یک مدار "آرایه کیت قابل برنامه ریزی میدان" (FPGA) ارایه می دهد. ساختار جدید سخت افزار شبکه عصبی خطی تطبیقی (ADALINE) ، پیاده سازی الگوریتم های سیستم قدرت را ممکن ساخته، و همچنین اجازه تحلیل زمان-واقعی هارمونیک های مرتبه-بالا را بدون افزایش دادن ناحیه پیاده سازی مدار FPGA، خواهد داد. این ویژگی ها برای واسط های الکترونیک قدرتی DG جدید ایده آل می باشد، که می توان از آن نه تنها برای فرستادن توان اکتیو، بلکه برای جبران سازی هارمونیک ها و توان راکتیو نیز، استفاده کرد. شبیه سازی و نتایج تجربی طرح های پیشنهادی با فرکانس های ثابت و متغیر نیز، پیوست شده اند تا اعتبار آنها مورد تاکید قرار گیرد.
اصطلاحات مربوط: شبکه عصبی مصنوعی (ANN) ، تولید توان توزیع شده، تجزیه و تحلیل توان، آرایه های منطقی قابل برنامه ریزی، اندازه گیری توان، اعوجاج هارمونیکی کل.
مقدمه
این روزها، بهره برداری عظیم از منابع انرژی توزیع شده (DER) مبنی بر منابع تجدید پذیر، برای کاهش مسایل مربوط به انتشار گاز گلخانه ای و نیز برای افزایش قابلیت اطمینان و توانایی سیستم های قدرت واقعی و آینده، بسیار مهم شده است. آنگاه، بهره برداری عظیم از DER توسط دولت ها و صنعت، در سراسر دنیا ارتقا یافته است.
توسعۀ سیستم های با انرژی تجدیدپذیر و فن آوری های شبکه هوشمند، برای ایجاد امکان برای متصل کردن DER به سیستم های قدرت متمرکز شده سنتی، بایسته می باشد. این پیشرفت های فنی، نفوذ بالای تولید توزیع شده (DG) را موجب می شود.
چکیده
به عنوان یک طرح کارآمد برای ارائه اطلاعات و مکانیسم شبیه سازی متناسب با بررسی های بی شمار و حوزه های کاربردی، طرح شناخت فازی (FCMs) توجه زیادی را از جوامع تحقیقاتی مختلف به سمت خود جلب کرده است. به هر حال FCMs (طرح شناخت فازی) سنتی، روش کارامدی را برای تعیین وضعیت سیستم مورد بررسی و تعیین علت و معلول که مبنای واقعی نظریه FCMs (طرح شناخت فازی) می باشد، ایجاد نمی کند. بنابراین در بسیاری از موارد، ایجاد FCMs (طرح شناخت فازی) برای سیستم های علت و معلول یچیده بستگی به دانش متخصصان دارد. مدل های ایجاد شده فیزیکی، دارای کمبودهایی مهمی از نظر خاص بودن مدل و مشکلاتی از نظر دسترسی قابل اطمینان دارند. در این مقاله به طرح شبکه عصبی فازی برای بالا بردن توان یادگیری FCMs (طرح شناخت فازی) پرداخته به گونه ای که تعیین خودکار توابع عضویت و تعیین علت و معلول آن با مکانیسم استنتاج FCMs (طرح شناخت فازی) رایج ادغام می گردد. به این ترتیب، مدل FCMs (طرح شناخت فازی) سیستم های مورد بررسی به صورت اتوماتیک از داده ها ایجاد شده و بنابراین مستقل از یافته های متخصصان می باشند. علاوه بر این، لز زیرمجموعه های متقابل برای تعریف و شرح علت و معلول در FCMs (طرح شناخت فازی) استفاده می کنیم. این موارد تفاسیر مشخصی را در ارتباط با دلایل FCMs (طرح شناخت فازی) ایجاد کرده و به این ترتیب درک فرایند استنتاج را اسان تر می کند. برای تایید عملکرد، روش پیشنهادی در سری زمانی پر هرج و مرج پیش بینی شده، تست می گردد. بررسی های شبیه سازی شده کارایی روش پیشنهادی را نشان می دهد.
مقدمه
از زمان تحقیقات کوشو، طرح شناختی فازی (FCMs) توجه زیادی را از جوامع تحقیقاتی مختلف به سمت خود جلب کرده است. به عنوان یک روش بررسی مدل ها، برای سیستم های پیچیده، مدل FCMs به بررسی سیستم های دیگر به عنوان مجموعه ای از مفاهیم و روابط بین این مفاهیم که منشاء آن از ترکیب منطق فازی و شبکه های عصبی می باشد پرداخته است. ذاتا، FCMs به عنوان یک نمودار مستقیم همراه با بازخوردهایی می باشد که شامل مجموعه ای از گره ها و منحنی هایی می باشد که این گره ها را به هم مرتبط می کند. شکل 1 نمایش گرافیکی FCM و ساختار شبکه ای آن را نشان می دهد.
دسته: مقالات ترجمه شده
حجم فایل: 860 کیلوبایت
تعداد صفحه: 33
پیشبینی موفقیت ERP: یک رهیافت شبکه عصبی مصنوعی
چکیده
به سیستم برنامهریزی منابع سازمان (ERP) بعنوان نمونهای از سیستمهای اطلاعات جدید اشاره شده است. با اینحال، دست یافتن به سطح مناسبی از موفقیت ERP متکی به عاملهای گوناگونی است که این عوامل به یک محیط سازمانی یا پروژهای وابسته هستند. در این مقاله، درمورد ایده پیشبینی موفقیت پیش از پیادهسازی ERP براساس مشخصات سازمانی، بحث شده است. همچنانکه با نیاز به ایجاد انتظارات از سازمانهای ERP، یک سیستم خبره با استفاده از روش شبکه عصبی مصنوعی (ANN) برای بیان روابط بین برخی از عوامل سازمانی و موفقیت ERP توسعه داده شد. نقش سیستم خبره در آماده سازی برای به دست آوردن اطلاعات از شرکت های جدید که مایل به پیاده سازیERP هستند، و برای پیش بینی سطح محتمل موفقیت سیستم، است. برای این منظور، عاملهای مشخصات سازمانی به رسمیت شناخته شده و مدل ANN توسعه داده شده است. سپس، با 171 داده بررسی شده به دست آمده از شرکتهای خاور میانه که ERP را تجربه کردهاند اعتباردهی میشوند. سیستم خبره آموزش دیده، با ضریب همبستگی متوسط 0. 744پیشبینی میکند که نسبتاً بالا است و این ایده وابستگی موفقیت ERP به مشخصات سازمانی را حمایت می کند. علاوه بر این، نرخ طبقه بندی صحیح مجموع 0. 685 نشان می دهد قدرت پیش بینی خوب است، که می تواند به پیش بینی موفقیت ERP شرکتها قبل از پیاده سازی سیستم کمک نماید.
کلیدواژهها:
برنامهریزی منابع سازمان (ERP) ؛ موفقیت ERP؛ مشخصات/عاملهای سازمانی؛ شبکه عصبی مصنوعی (ANN) ؛ سیستم خبره
قیمت: 20,000 تومان
چکیده
منطق فازی، یک شبکه عصبی و سیستم خبره است که برای ایجاد یک سیستم تشخیصی ترکیبی با یکدیگر ترکیب شده اند. با استفاده از چنین سیستمی ما یک روش جدید برای فراگیری مبانی دانش استفاده می کنیم. سیستم ما شامل یک سیستم خبره فازی همراه با یک بیس دانشی با منبع دوگانه است. دو سری قوانین لازم هستند، که به صورت استنباطی از مثالهای ارائه شده و به صورت استقرایی توسط فیزیک دانان بدست آمده اند. یک شبکه عصبی فازی سعی می کند که از داده های نمونه یاد گرفته و این اجازه را می دهد که قوانین فازی برای دانش پایه را استخراج کنیم. تشخیص electroencephalograms با تفسیر عناصر نموداری بعنوان یک نوع مشاهده در روش ما بکار گرفته می شود. نتایج اولیه نشان دهنده احتمالات مورد نظر با استفاده از روش ما می باشد.
مقدمه:
روشهای تکراری شناسایی و ارزیابی پدیده خاص را کار تشخیصی می نامند، که یکی از کاربردهای اصلی برای هوش مصنوعی (AI) می باشد. با توجه به اینکه رنج وسیعی از چنین کاربرهای تشخیصی وجود دارد. اگرچه رنج وسیعی از چنین کاربردهای تشخیصی در پزشکی وجود دارد ولی این بخش مورد توجه استفاده کنندگام از هوش مصنوعی قرار دارد. عمومی ترین روشهای AI در بخش پزشکی مبتنی بر دانش و مدلسازی رفتار تشخیصی متخصصان است. انواع مختلفی از چنین سیستمهای خبره ای از زمانی که Shrtlifee روش Shrtlifee Mycin را بi عنوان یک سیستم خبره برای تشخیص آسیبهای خونی انسان طراحی و معرفی کرد، بوسیله پزشکان مورد استفاده قرار گرفته است. یکی از بزرگترین مشکلات بر سر راه طراحی یک سیستم خبره مناسب، گردآوری و دانش پایه آن است. ما روش جدیدی را معرفی می کنیم که در آن دانش پایه با منبع دوگانه بوسیله یادگیری قیاسی واستقرایی ایجاد می شود. شیکه های عصبی نیز از این راه برای تشخیص استفاده می کنند. آنها قادرند رابطه بین مجموعه داده ها را با داشتن اطلاعات نمونه که نشان دهنده لایه های ورودی و خروجی آنها است، یاد بگیرند.
چکیده
پیشبینی دقیق قدمت برق، چالشی بزرگ برای شرکت کنندگان و مدیران بازار می باشد، زیرا قیمت الکتریسیته دارای نوسانات بسیاری است. پیشبینی قیمت نیز، مهم ترین هدف مدیریتی برای مشارکت کنندگان در بازار است، چرا که مبانی بیشینه کردن سود را، تشکیل می دهد. این مطالعه، عملکرد یک تکنیک شبکه عصبی جدید را بنام ناشین یادگیری سریع (ELM) ، در مساله پیشبینی قیمت، بررسی می کند. با در نظر داشتن خط مربوط به بازهای برق که دارای نوسانات بسیاری در قیمت هستند، تکیه به یک تکنیک، خیلی هم سودمند نمی باشد. بنابراین، ELM با تکنیک موجک همراه شده است و یک مدل پیوندی (مرکب) را به نام WELM (ELM مبتنی بر موجک) را تشکیل داده است تا دقت پیشبینی و نیز قابلیت اطمینان آن را، بهبود بخشد. در این روش، ویژگی های بی همتای هر ابزار، تکریب شده اند تا الگوهای مختلفی را در اطلاعات، بدست آورند. قدرت این تکنیک، با استفاده از روش مجموع شده، بهبود بیشتری می یابد. عملکردهای مدل های ارایه شده، با استفاده از اطلاعات موجود در بازارهای برق انتاریو، PJM، نیویورک و ایتالیا، ارزیابی شده اند. نتایج آزمایشی نشان می دهند که روش پیشنهادی، یکی از مناسب ترین تکنیک های پیشبینی قیمت می باشد.
کلیدواژه ها: شبکه عصبی مصنوعی (ANN) ، تجدید ساختار، روش مجموع، ماشین یادگیری سریع (ELM) ، پیشبینی قیمت، تبدیل موجک
پروژه کارشناسی ارشد برق
فایل محتوای
اصل مقاله لاتین 10 صفحه
متن ورد ترجمه شده بصورت کاملا تخصصی 26 صفحه