دسته: برق
حجم فایل: 400 کیلوبایت
تعداد صفحه: 11
مدل سازی، تجزیه و تحلیل و محل بهینه UPFC برای به حداقل رساندن تلفات توان حقیقی
چکیده
یک مفهوم جدید از سیستم انتقال AC انعطاف پذیر (FACTS) تغییرات اساسی در عملکرد و کنترل سیستم قدرت را به ارمغان می آورد. یک روش جدید با استفاده از ادوات FACTS در ارتباط با پیشرفت در تکنولوژی نیمه هادی باز می شود فرصت هایی جدید برای کنترل قدرت و افزایش ظرفیت قابل استفاده از خطوط انتقال موجود هستند. کنترل کننده جریان توان پیوسته برای کنترل زمان واقعی و جبرانسازی دینامیکی سیستم های انتقال ابداع شده است، ارائه انعطاف پذیری چند منظوره مورد نیاز برای حل کردن بسیاری از مشکلات پیش روی تحویل توان به صنعت است. در چارچوب مفاهیم انتقال توان سنتی، UPFC قادر به کنترل است، به طور همزمان و یا به صورت انتخابی تمام پارامترهای موثر بر جریان توان در خط انتقال و این قابلیت منحصر به فرد نشانگر صفت "واحد" در نام خود است. UPFC می تواند به طور مستقل هر دو توان اکتیو و راکتیو در خط را کنترل کند.
کلمات کلیدی: UPFC، توان راکتیو، facts
مناسب برای درس
توان راکتیو
و
درس ادوات فکس
کارشناسی ارشد برق
مقاله سال
2013
قیمت: 16,000 تومان
چکیده –هدف اصلی این مقاله ارائه گسترش مدل منبع کوچک و تعیین استراتژی های کنترلی که برای سنجش امکان پذیر بودن عملکرد شبکه کوچک اتخاذ می گردد، وقتی که ایزوله شده است، می باشد. معمولا شبکه کوچک در حالت وابسته با شبکه MV کار می کند، هر چند ایزوله بودن اجباری یا برنامه ریزی شده اتفاق بیافتد. در چنین شرایطی، شبکه کوچک باید دارای این توانایی باشد که بطور استوار و خود گردان کار کند. یک برآورد از نیاز دسنگاه های ذخیره کننده و استراتژی های کاهش بار در این مقاله آورده شده است.
فهرست اصطلاحات –کنترل و ثبات پویای سیستم قدرت؛ منابع انرژی تجدید پذیر و دستگاه های ذخیره کننده؛ یکپارچگی توزیع تولید در شبکه های اصلی.
پروژه کارشناسی ارشد برق
فایل محتوای:
۱) اصل مقاله لاتین ۷ صفحه IEEE
۲) متن ورد ترجمه شده بصورت کاملا تخصصی ۲۳ صفحه
چکیده
اخیرا نصب ژنراتورهای کوچک در شبکه های توزیع، به علت مزیت های متعددی که دارند، افزایش یافته است. یکی از مسائل مهم مربوط به این ژنراتورهای توزیع شده، تاثیر خطاهای سیستم بر پایداری گذرای آنها است. به علت ثابت اینرسی کم ژنراتورهای مقیاس کوچک و عملکرد آهسته رله های حفاظتی شبکه های توزیع، ایجاد ناپایداری گذرا برای این ژنراتورها کاملا محتمل است. در این مقاله، رفتار دینامیک ژنراتورهای سنکرون مقیاس کوچک در برابر خطاهای سیستم و حساسیت آن ها به پارامترهای سیستم مورد بررسی قرار می گیرند. سپس یک روش حفاظتی عملی با استفاده از اضافه جریان موجود و رله های کمبود ولتاژ پیشنهاد می شود و به مزیت ها و معایب آن اشاره می شود. در ادامه، بر اساس اطلاعات به دست آمده از تحلیل حساسیت، یک رله حفاظتی جدید برای حفاظت ژنراتورها در برابر ناپایداری پیشنهاد می شود. رله پیشنهادی از یک ژنراتور قدرت فعال برای تعیین زمان مناسب برای قطع کردن ژنراتور استفاده می کند. نتایج شبیه سازی عملکرد مطمئن و مقاومت رله پیشنهادی در برابر ناپایداری های گذرای سیستم تایید می کنند. علاوه براین، الگوریتم پیشنهادی با ژنراتورهایی با قابلیت کار کردن با شبکه های سراسری خطا دار، هم سازگار است.
اصطلاحات شاخص: سیستم حفاظتی تولید پراکنده (DG) ؛ تولید پراکنده؛ قابلیت کار کردن با شبکه های سراسری خطا دار (FRT) ؛ پایداری گذرا
مقدمه
تولید پراکنده (DG) به عنوان یک منبع توان الکتریکی که مستقیما به شبکه توزیع یک سیستم قدرت متصل می شود، تعریف می شود [1]. این روزها نصب DG ها در سیستم های قدرت به دلیل مزایایی که دارند، از جمله کاهش افت، پیک سایی، خدمات کمکی، کیفیت توان بالاتر، زمان ساخت کوتاه تر شان، احتمال افت بار کمتر و هم چنین تعویق انتقال، جایگزینی توزیع، مسائل مقررات زدایی و نگرانی های زیست محیطی، رو به افزایش است [2]- [5]. با این حال، اتصال داخلی DG ها برخی تغییرات را به سیستم های توزیع موجود تحمیل می کند و می تواند در سیستم های قدرت ناپایداری ایجاد کند و حتی منجر به قطع برق شود [6], [7]. وقتی DG بطور موازی با سیستم شبکه برق کار کند، رویه حفاظتی سیستم های توزیع سنتی را بهبود می دهد. رله کردن مناسب و تنظیم DG می توانند مهم ترین لوازم تعیین کننده برای جلوگیری از ناپایداری ژنراتور باشند.
موضوع: ترجمه مقاله طراحی پایدار کننده سیستم قدرت با استفاده از سیگنال های محلی و سراسری فایل دانلودی شامل: ۱) پاورپوینت آماده جهت ارائه ۲) اصل مقاله لاتین ۳) فایل ورد ترجمه شده به صورت تخصصی ۱۸ صفحه چکیده: در این مقاله امکان اجرای منطق فازی مبنی بر پایدار کننده سیستم قدرت با ورودی های محلی و راه دور ارائه شده است. با استفاده از سیگنال های سراسری با پشتیبانی سیستم تعیین موقعیت جهانی (GPS) و اندازه گیری گسترده (WAM) احتمال چشم انداز جهانی سیستم قدرت و میرایی بهتر برای ناحیه بین نوسانات را افزایش می دهد. ما دو ورودی کنترل کننده منطق فازی برای بررسی کردن اتخاذ کرده ایم ورودی محلی سیگنال ژنراتور، انحراف سرعت روتور برای میرایی نوسانات حالت محلی استفاده شده است. سیگنال های سراسری به دست آمده از WAM، مانند فرکانس دیفرانسیل ناحیه یا انحراف توان موثر خط ارتباطی برای میرایی ناحیه بین نوسانات استفاده شده است. در این مطالعه، هر دو سیگنال گذرا و سیگنال کوچک تحلیل پایداری
برای تعیین عملکرد سیستم مورد مطالعه استفاده شده اند.
کلمات کلیدی: منطق فازی، پایدار کننده سیستم قدرت، واحد اندازه گیری فازور،
چکیده
در این مقاله یک مدل پخش بار بهینه (OPF) با جریان توان پیوندی مبنی بر تزریق جریان معادل (ECI) ارایه شده، و نیز الگوریتم نقطه داخلی پیشبینی کننده تصحیح کننده (PCIPA) ، به منظور بکارگیری OPF (پخش بار بهینه) برای حل مسایل برنامه نویسی غیر خطی (NLP) عنوان شده است. همچنین روش ارایه شده را می توان به دو زیر مساله، تجزیه کرد. نتایج محاسباتی باس های IEEE 9 تا 300 نشان دادند که الگوریتم ارایه شده می تواند با بهبود تعداد تکرارها، ذخیره سازی های حافظه، و زمان CPU، باعث بهبود عکلکرد شود.
اصطلاحات مربوطه: تزریق جریان معادل، برنامه نویسی غیرخطی، پخش بار بهینه، الگوریتم نقطه داخلی پیشبینی کننده تصحیح کننده
مقدمه
پخش بار بهینه برای نخستین بار در سال 1962 مورد بحث قرار گرفت [1] و مدت ها طول کشید تا به یک الگوریتم پرکاربدی که در کاربردهای روزانه بکار رود، تبدیل شود [2] و [3]. OPF را می توان نه تنها در برنامه ریزی سیستم بکاربرد، بلکه می توان آن را در عملکرد لحظه ای سیستم های قدرت، در محیط حذف نظارت دولت نیز اعمال کرد. مرجع [4]، یک معرفی کلی از تکنیک های روش تکرار لامبدا، روش گرادیان، روش نیوتون، و برنامه نویسی خطی (LP) به منظور حل مسایل OPF ارایه داده است. با انتشار Karmarkar [5] در سال 1984، الگوریتم های نقطه داخلی (IPA) زیادی برای برنامه نویسی خطی و برنامه نویسی درجه دوم (QP) ارایه شده است. در سال های اخیر، الگوریتم نقطه داخلی اولیه دوگانه، بطور گسترده به منظور حل مسایلی همچون [6]، [7]، پیشبینی حالت [8]، OPF با امنیت محدود [9]، و پخش بار راکتیو بهینه [10] بکار رفته است. نتایج عددی نشان می دهند که PCIPA توانایی زیادی برای حل مسایل عملکرد و برنامه ریزی سیستم قدرت در مقایسه با روش های مرسومی همچون روش نیوتون [11] دارد.
چکیده
سیستم های قدرت مدرن، نیازمند افزایش هوش و انعطاف پذیری در کنترل و بهینه سازی هستند، تا از قابلیت تثبیت تعادل میان بار و تولید به دنبال تداخلات جدی اطمینان حاصل شود. این قضیه امروز، به سبب افزایش تعداد ریزشبکه ها (MG) ، در حال یافتن اهمیتی بیش از پیش است. ریزشبکه ها اغلب از انرژی های تجدیدپذیر برای تولید توان الکتریکی استفاده می کنند، که تولید توان با این انرژی ها، طبیعتا متغیر است. این تغییرات و عدم قطعیت های رایج در سیستم قدرت، موجب می شود که کنترل کننده های قدیمی نتوانند عملکرد مناسبی را در بازه های گسترده شرایط عملیاتی، ارایه دهند. در پاسخ به این چالش، این مقاله یک روش هوشمند آنلاین جدید را، با آمیختن تکنیک های منطق فازی و بهینه سازی ازدحام ذرات (PSO) ، برای تنظیم بهینه معروف ترین کنترل کننده های مبتنی بر تناسبی-انتگرالی (PI) در سیستم های میکرو شبکه، ارایه می دهد. این روش طراحی کنترل، بر روی یک ریزشبکه AC به عنوان مورد آزمایشی تست شده است. عملکرد ترکیب کنترلی هوشمند ارایه شده، با روش های کنترل PI کاملا فازی و کنترل PI زیگلر-نیکولز، مقایسه شده است.
اصطلاحات شاخص: منطق فازی، کنترل هوشمند، ریزشبکه، تنظیم بهینه، بهینه سازی ازدحام ذره، کنترل فرکانس ثانویه
مقدمه
افزایش نیاز به توان الکتریکی، موجب شده است تا بسیاری از منابع غیرمعمولی نیز وارد سیستم قدرت شوند، که این منابع، پیچیدگی و عدم دقت سیستم را افزایش می دهند. از منابع انرژی های نو (تجدیدپذیر) (RES) ، اغلب بعنوان واحدهای تولید کننده جایگزین در یک سیستم قدرت مدرن، استفاده می شود. افزایش نفوذ RESها (منابع انرژی های نو) ، دارای مزیت هایی می باشد، اما همچنین چالش های تازه ای را نیز به بار می آورد که آیا این منابع می توانند بطور پایدار در کنار واحدهای تولید کننده موجود، کار کنند یا نه. برخی از چالش های فنی که توسط منابع انرژی های نو ایجاد می شوند، تعمیر و نگهداری و حفاظت از RESها می باشد که این مسایل، در رگولاسیون ولتاژ و فرکانس سیستم، و نیز در طرح کنترلی مناسب هم در حالت متصل به شبکه، و هم در حالت جدای از شبکه تاثیر می گذارند.
دسته: برق
حجم فایل: 1516 کیلوبایت
تعداد صفحه: 62
این فایل 62 صفحه ای در قالب ورد محاسبات پخش بار و اتصال کوتاه مدار 6 شینه که در عکس مشاهده میکنید را دارا میباشد که بصورت کامل و با ترسیم شکلها در نرم افزار و محاسبات فوق خدمت شما قرار گرفته است.
Load Flow:
مدار 6 شینه شکل را ببندید و المانهای قدرت را براساس شکل نامگذاری کنید.
پس ازتکمیل شدن شماتیک تک خطی سیستم قدرت اطلاعات مربوط به تک تک المانها راازطریق کلیک دوبل یاData Manager وارد می کنیم.
برای شروع، اطلاعات مربوط به ترمینال هارامطابق جدول زیروارد می کنیم.
(فقط کافی است داده هایی که لازم وقابل تغییر میباشند راتغییردهیم بقیه مقادیردرحالت پیش فرض صحیح می باشند)
تمام ترمینالهای شبکه 400کیلوولت وسه فاز متناوب هستند.
...
قیمت: 20,000 تومان
دسته: برق
حجم فایل: 771 کیلوبایت
تعداد صفحه: 8
ارزیابی کاهش فلیکر نور به کمک جبرانسازهای موازی (شنت) + نسخه انگلیسی
As se s sment of Light Flicker Mitigation using Shunt Compensators
چکیده- هدف اصلی این مقاله مقایسه کارائی نسبی جبرانسازهای موازی در کاهش (تسکین) فلیکر نور حاصل از کوره قوسی است. یک سیستم تست متشکل از یک کوره قوسی مدلشده در نرم افزار PSCDAD/EMTDC، در یک حالت با حضور جبرانساز استاتیکیVar (SVC) و جبرانساز استاتیکی سنکرون (STATCOM) و در حالتی دیگر بدون حضور آنها شبیهسازی شده شد. مشخصات جبرانسازی این دستگاهها برحسب شاخصهای شدت فلیکر (Pst) و با استفاده از مدل فلیکرمتریِ توسعه یافته در PSCAD/EMTDC اندازهگیری و بررسی شد. نتایج شبیهسازی نشان میدهد که STATCOM به علت پاسخ سریعتر، قابلیت کاهش فلیکری بالاتری را نسبت به SVC دارا می باشد.
I. مقدمه
سیستم قدرت نوین یک شبکه پیچیده است که تعداد زیادی از تجهیزات الکتریکی را به هم متصل میکند. صنایع سنگینی مثل ذوبآهن که در یک سیستم قدرت به شبکه محلی متصلند مصرف توان بسیار بالایی دارند که میزان مصرفِ توان، با زمان متغیر است. صنایع ذوبآهن دارای بار کوره قوسی است که به شدت غیرخطی است. جریان کشیده شده توسط این نوع بار در طی فرایند ذوب به سرعت تغییر میکند. تغییرات سریع جریان باعث افت ولتاژ در امپدانس سیستم AC شده و در نتیجه در نقاط تزویج مشترک (PCC) ولتاژ نوسانی حاصل میشود. اگر ولتاژ با فرکانس 0. 5-35 Hz نوسان کند آنگاه در شدت روشنایی نور الکتریکی تغییراتی بوجود میآید. این تغییر شدت نور الکتریکی را فلیکر (چشمک زدن، سوسوکردن) نور گویند. با اینکه این اتفاق عمدتا در لامپهای التهابی رخ میدهد، اما در برخی مواردِ نادر لامپهای مهتابی (فلورسنت) نیز پدیده فلیکر نور را تجربه میکنند.
قیمت: 15,000 تومان
خلاصه
هدف از این مقاله به چند منظور است طراحی از تک ماشین پایدار کننده های سیستم قدرت (PSSs) با استفاده از اصلاح الگوریتم جهش قورباغه (MSFLA). توانایی روش پیشنهاد شده برای تنظیم بهینه با حضور CPSSs به طور گسترده استفاده شده است. طراحی پارامترهای PSSs به یک مشکل تبدیل شده است برای مشکل بهینه سازی با چند تابع هدف شامل ضریب میرایی مطلوب و نسبت میرایی مطلوب از روش های سیستم قدرت که توسط الگوریتم MSFLA حل شده است. توانایی روش پیشنهاد شده در یک سیستم قدرت تک ماشین تحت شرایط عملیاتی متفاوت و اختلالات تایید شده است. نتایج روش پیشنهاد شده در مقایسه با الگوریتم ژنتیک (GA) مبنی بر تنظیم PSS از طریق برخی از شاخص های عملکرد، عملکرد قوی خود را آشکار میکند.
کلمات کلیدی: طراحی PSS، اصلاح الگوریتم جهش قورباغه (MSFLA) ، بهینه سازی چند هدفه، الگوریتم ژنتیک (GA).
I. مقدمه
یکی از جنبه های مهم در سیستم الکتریکی عملیات پایداری سیستم های قدرت می باشد.
این مسئله را این واقعیت که در سیستم قدرت باید فرکانس و سطح ولتاژ، تحت هر گونه اختلال، مانند افزایش ناگهانی بار، از دست دادن یک ژنراتور یا سوئیچینگ نادرست از یک خط انتقال در طول یک خطا حفظ شود تشکیل می دهند. [1]
در سیستم های قدرت در هنگام و بعد از یک اختلال کوچک یا بزرگ در سیستم نوسانات فرکانس پایین (به ترتیب از 0.1-2.5 هرتز) روی می دهد، به خصوص در میان شرایط بارگذاری زیاد3]. [2، اگر میرایی مناسب وجود نداشته باشد این نوسانات ممکن است ادامه داشته وزیاد شوند و باعث تجزیه سیستم شوند [4]. PSSs موثر ترین ابزار برای میرایی فرکانس پایین نوسانات و افزایش پایداری سیستم های قدرت است [5].
چکیده
مفهوم جدید سیستم انتقال AC انعطاف پذیر (FACTS) تغییرات اساسی در عملکرد و کنترل سیستم قدرت را به ارمغان می آورد. یک روش جدید با استفاده از ادوات FACTS در ارتباط با پیشرفت در تکنولوژی نیمه هادی باز می شود فرصت هایی جدید برای کنترل قدرت و افزایش ظرفیت قابل استفاده از خطوط انتقال موجود هستند. کنترل کننده جریان توان پیوسته برای کنترل زمان واقعی و جبران سازی دینامیکی سیستم های انتقال ابداع شده است، ارائه انعطاف پذیری چند منظوره مورد نیاز برای حل کردن بسیاری از مشکلات پیش روی تحویل توان به صنعت است. در چارچوب مفاهیم انتقال توان سنتی، UPFC قادر به کنترل است، به طور همزمان و یا به صورت انتخابی تمام پارامترهای موثر بر جریان توان در خط انتقال و این قابلیت منحصر به فرد نشانگر صفت «واحد» در نام خود است. UPFC می تواند به طور مستقل هر دو توان اکتیو و راکتیو در خط را کنترل کند.
کلمات کلیدی: UPFC، توان راکتیو، facts
مقدمه
در طول سال ها، روشن شده است که حداکثر ظرفیت عملیاتی مطمئن از سیستم انتقال اغلب نه بر اساس ولتاژ و پایداری زاویه ای بلکه در محدودیت های فیزیکی است. و نیز در سال های اخیر نگرانی های اکولوژیکی و هزینه های نصب و راه اندازی بالا محدودیت های بیش از ساخت نیروگاه های جدید و خطوط هوایی در بسیاری از کشورها قرار داده اند، در نتیجه به اجبار سیستم موجود به طور موثر تر به جای احداث خطوط جدید استفاده می شود، صنعت گرایش به سوی توسعه فن آوری و یا دستگاه هایی که باعث افزایش ظرفیت شبکه انتقال در عین حفظ و یا حتی بهبود پایداری شبکه دارد. [1] هدف اصلی ما برای پاسخگویی به تقاضای بار الکتریکی قابل اطمینان است در حالی که به طور همزمان کیفیت خاص محدودیت های اعمال شده بر روی منبع تغذیه را برآورده کند.