بررسی محاسبه مدل فلش ولتاژ به دلیل راه اندازی موتورهای ولتاژ بالا و توان بزرگ

چکیده

راه اندازی موتورهای ولتاژ بالا و با توان بزرگ، تاثیر شدیدی بر روی شبکه های قدرت گذاشته و موجب فلش (sag) ولتاژ می شود. در موارد شدید، بر روی عملکرد نامی دیگر وسایل نیز تاثیر می گذارد. Sag (فلش) ولتاژ، برجسته ترین مشکل کیفیت توان بوده، و هر دو سمت منبع توان را تحت تاثیر قرار می دهد. این مقاله اساسا بر روی فرآیند راه اندازی موتورهای القایی ولتاژ بالا و با توان بزرگ که در صنعت کاربرد زیادی دارند، تمرکز دارد. مدل کردن فرآیند راه اندازی موتور شامل انتخاب مدار معادل موتورهای با ساختارهای مختلف، جمع آوری و بررسی امپدانس های روتور و استاتور، فرآیندی کلیدی می باشد. بطور طبیعی، با نداشتن مواد آزمایش تحویل، این کمیت ها را باید با آزمایش بدست آورد. نکته کلیدی برای افزایش دقت شبیه سازی، مدل کردن روابط ریاضی امپدانس های استاتور و روتور موتور در فرآیند راه اندازی برای بدست آوردن منحنی دقیق تر گشتاور الکترومغناطیسی موتور، شامل جمع آوری و ارزیابی اینرسی چرخشی موتور، می باشد. این مستقیما به مدت زمان راه اندازی موتور بستگی دارد. جمع آوری و ارزیابی منحنی گشتاور بار، به گشتاور شتاب مربوط می باشد. سرانجام، آن (گشتاور بار) مدت زمان فرآیند راه اندازی را تعیین می کند. این مقاله همچنین روش های کاهش جریان راه اندازی به منظور کاهش اثر بر روی شبکه قدرت، و در نتیجه کنترل سطح فلش ولتاژ به یک محدوده، را معرفی می کند. این تحقیق بطور موفقیت آمیزی در ارزیابی توان برای جمع آوری پروژه Shanghi Qingcaosha Raw Water، پروژه واحدهای سردسازی Shanghai Zizhuyuan استفاده شده است.

کلیدواژه ها: راه اندازی موتور، مدل محاسباتی

مقدمه

امروزه، فلش ولتاژ، برجسته ترین مساله کیفیت توان که تعداد وسایل حساس به کیفیت توان افزایش یافته و تقاضای کیفیت توان افزایش یافته است، شده است. بر اساس تحقیقات حوزه توان EU، بیش از 80% شکایات مصرف کنندگان بر روی کیفیت توان، به دلیل فلش ولتاژ بوده است. راه اندازی کامل موتورهای ولتاژ و توان بالا، نیاز به کشیدن 5 تا 8 برابر جریان نامی را دارند که این جریان از امپدانس سیتم گذشته، و باعث فلش ولتاژ بر روی شین منبع خود و شین های مرتبط می شود. فلش ولتاژ بر روی شین منبع باعث دو مشکل جدی می شود: نخست اینکه شرایط عملکرد دیگر تجهیزات درحال کار، بویژه تجهیزات حساس به کیفیت توان وقفه ایجاد می کند.

خرید و دانلود

ضرب کننده ولتاژ مبنی بر اینورتر CMOS جدید

چکیده__ چهار ضرب کننده ولتاژ برمبنای اینورتر CMOS جدید تشکیل شده از ترانزیستورهایعبور PMOS/NMOS، مدارات اینورتر، و خازن ها، در این مقاله ارایه شده اند. ضرب کننده های ولتاژ ارایه شده که عملیات یکسوسازها و پمپ های شارژ را با هم انجام می دهند، بازده ی تبدیل توان را بالا برده و تعداد مولفه های واکنشی (غیر فعال یا پسیو) را کاهش می دهد، بنابر این برای ساخت آی سی مناسب می باشند. ضرب کننده ولتاژ با ولتاژ خروجی مثبت، توسط فرآیندهای TSMC ۰. ۳۵μm CMOS ۲P۴M پیاده سازی شده، و نتایج آزمایشی نیز مطابقت خوبی با تجزیه و تحلیل های نظری داشتند. سطح تراشه ی بدون پد، به ازای ولتاژ خروجی مثبت پنج-مرحله ای ضرب کننده ولتاژ، تنها ۱. ۷۵×۱. ۳۲ mm۲ می باشد.

پروژه کارشناسی ارشد برق

فایل محتوای:

  • اصل مقاله لاتین ۴ صفحه IEEE
  • متن ورد ترجمه شده بصورت کاملا تخصصی و قابل ویرایش ۱۳ صفحه

خرید و دانلود

ترجمه مقاله بهبود عملکرد خروجی یک مبدل ماتریسی Z-Source Sparse تحت شرایط ولتاژ ورودی نامت

پروژه کارشناسی ارشد برق

چکیده:

در این مقاله، ما یک مبدل ماتریسی Z-sourse sparse (ZSMC) ، و یک روش جبران سازی مبنتی بر کنترل کننده منطق فازی را برای جبران ولتاژهای ورودی نامتعادل، ارایه می دهیم. ZSMC (Z-source matrix converter) ، طبق ساختمان یک SMC توسعه داده شده است تا تعداد سوییچ های نیمه-هادی قدرت تک-قطبی را کاهش دهد، و از شبکه Z-source نیز برای غلبه بر محدودیت ذاتی نسبت تبدیل ولتاژ مبدل های ماتریسی (Matrix Converter) مرسوم، استفاده می کند. اگرچه ZSMC یک مبدل دو-مرحله ای است، مستقیما از طریق یک شبکه Z-source _که طوری طراحی شده است که دارای مولفه ها پسیو (غیرفعال) کمتری باشد_ یک منبع را با یک بار، متصل می کند؛ چرا که تنها هدف، تقویت ولتاژ است. بنابراین، خروجی ZSMC، تحت تاثیر مستقیم تداخلات منبع ولتاژ ورودی، قرار دارد. اصل عملیاتی ZSMC، در اینجا تشریح شده است و استراتژی مدولاسیون آن نیز، بیان شده است. همچنین به منظور بررسی صحت عملی بودن ZSMC و روش جبران سازی آن، شبیه سازی ها و نتایج آزمایش مربوطه، نشان داده شده است.

اصطلاحات شاخص جبران سازی، کنترل منطق فازی (FLC) ، مبدل ماتریسی sparse (SMC) ، ولتاژ ورودی نامتعادل، شبکه Z-source.

فایل محتوای:

  • اصل مقاله لاتین ۱۲ صفحه IEEE ۲۰۱۲
  • متن ورد ترجمه شده بصورت کاملا تخصصی ۲۸ صفحه

خرید و دانلود

بازیاب دینامیکی ولتاژ (DVR) مبتنی بر ذخیره ساز انرژی مغناطیسی ابر رسانا (SMES)

این مقاله، یک بازیاب دینامیکی ولتاژ (DVR) مبتنی بر ذخیره ساز انرژی مغناطیسی ابر رسانا (SMES) برای حفاظت مصرف کننده ها در مقابل نوسانات ولتاژ شبکه ارائه می کند. به علت مشخصه چگالی انرژی بالا و پاسخ سریع، یک سلف مغناطیسی ابررسانا به عنوان واحد منبع انرژی برای بهبود قابلیت جبرانسازی DVR انتخاب می شود. این مقاله، اساس عملکرد DVR مبتنی بر SMES را آنالیز می کند و طراحی کنترل ولتاژ خروجی DVR را بیان می کند. سیستم کنترل اساساً شامل دو بخش؛ کنترل مبدل PWM و کنترلر چاپر DC/DC؛ است. کنترل مبدل PWM از استراتژی کنترلی حلقه دوبل (دو حلقه ای) با یک تنظیم کننده جریان داخلی و کنترلر ولتاژ بیرونی استفاده می کند. با ترکیب کنترل هماهنگ شده چاپر DC/DC، DVR می تواند ولتاژ خروجی را دقیقاً تنظیم کند و بطور سریع نوسانات ولتاژ سیستم را جبرانسازی کند. با استفاده از نرم افزار MATLAB/SIMULINK، مدل DVR مبتنی بر SMES ساخته می شود و آزمایشات شبیه سازی برای ارزیابی عملکرد سیستم انجام می شوند

پروژه کارشناسی ارشد برق

فایل محتوای:

  • اصل مقاله لاتین? صفحه IEEE
  • متن ورد ترجمه شده بصورت کاملا تخصصی و قابل ویرایش ?? صفحه
.

خرید و دانلود

قرار دادن خازن بهینه و اندازه در سیستم های توزیع نامتعادل

  • عنوان لاتین مقاله: Optimal Capacitor Placement and Sizing in Unbalanced Distribution Systems With Harmonics Consideration Using Particle Swarm Optimization
  • عنوان فارسی مقاله: قرار دادن خازن بهینه و اندازه در سیستم های توزیع نامتعادل با بررسی هارمونیک با استفاده از بهینه سازی ازدحام ذرات.
  • دسته: برق
  • فرمت فایل ترجمه شده: WORD (قابل ویرایش)
  • تعداد صفحات فایل ترجمه شده: 23
  • جهت دانلود رایگان نسخه انگلیسی این مقاله اینجا کلیک نمایید
  • ترجمه سلیس و روان مقاله آماده خرید است.

خلاصه

نصب خازن های شنت در سیستم های توزیع مستلزم قرار دادن بهینه و اندازه است. بیشتر هارمونیک ها به سیستم های توزیع تزریق شده است. اضافه کردن خازن های شنت ممکن است. منجر به اغتشاش سطوح بالا خط شود. مشکل قرار دادن خازن و به اندازه کردن یک ,مشکل غیر خطی بهینه سازی است، با جایابی و توان نامی در خازن های شنت مقادیر گسسته می شوند. هدف به حداقل رساندن هزینه کل از لحاظ اتلاف توان حقیقی ان هم از خازن های شنت در حین عملیات جبران کننده و محدودیت های کیفیت توان است. این مقاله برای حل این مشکل بهینه سازی با استفاده از ازدحام ذرات را پیشنهاد می کند (PSO). یک روش گسسته ازPSO ترکیب شده با یک توزیع شعاعی الگوریتم جریان قدرت (RDPF) به صورت یک الگوریتم هایبرید PSOاست. (HPSO) قبلا به کار گرفته شده استبه عنوان یک بهینه ساز جهانی برای پیدا کردن راه حل بهینه جهانی، در حالی که اخیرا برای محاسبه تابع هدف و برای بررسی محدودیت های ولتاژ باس استفاده شده است. شامل وجود هارمونیک ها، توسعه HPSOبا یک الگوریتم جریان توان هارمونیک یکپارچه شده است. (HPF)

پیشنهاد (HPSO-HPF) مبتنی بر روشی تست شده در IEEE13باسسیستم توزع شعاعی است. (13-Bus-RDS) یافته ها به وضوح ضرورت شامل هارمونیکها در قرار دادن خازن بهینه و اندازه برای جلوگیری از هر گونه مشکلات احتمالی وابسته به هارمونیک ها را ثابت می کند.

واژهای کلیدی –هارمونیک ها، ازدحام ذرات، خازن های شنت.

I. مقدمه

خازن های شنت معمولا در سیستم های توزیع به منظور کاهش تلفات، بهبود پروفیل ولتاژ، و آزادسازی ظرفیت سیستم استفاده می شود. دستیابی به مزایای این چنینی در میان مزایای دیگر تا حد زیادی در مورد چگونگی این خازن های شنت بهینه نصب شده بستگی دارد. مطالعات نشان داده اند. که حدود 13? از توان تولید شده به عنوان مصرف در سطح توزیع اتلاف می شود. علاوه بر این، با مصرف بارها، پروفیل ولتاژ تمایل به افت می کند همراه توزیع سوخت در زیر محدودیت ها عامل قابل قبولی است. همراه با تلفات توان و افت ولتاژ، رشد فزاینده ای در برق تقاضا نیاز به ارتقاء زیرساخت های سیستم های توزیع شده است. خازن های شنت می توانند کمک بزرگی در افزایش عملکرد سیستم های توزیع کنند سیستم های توزیع ذاتا به چند دلیل مجزا نامتعادل هستند.

  • فرمت: zip
  • حجم: 1.49 مگابایت
  • شماره ثبت: 411

خرید و دانلود

تنظیم توان کنترل کننده پی اس اس به منظور افزایش پایداری سیستم قدرت

  • عنوان لاتین مقاله: Robust Tuning of the PSS Controller to Enhance Power System Stability
  • عنوان فارسی مقاله: تنظیم توان کنترل کننده پی اس اس به منظور افزایش پایداری سیستم قدرت.
  • دسته: برق
  • فرمت فایل ترجمه شده: WORD (قابل ویرایش)
  • تعداد صفحات فایل ترجمه شده: 13
  • جهت دانلود رایگان نسخه انگلیسی این مقاله اینجا کلیک نمایید
  • ترجمه سلیس و روان مقاله آماده خرید است.

خلاصه

هدف از این مقاله به چند منظور است طراحی از تک ماشین پایدار کننده های سیستم قدرت (PSSs) با استفاده از اصلاح الگوریتم جهش قورباغه (MSFLA). توانایی روش پیشنهاد شده برای تنظیم بهینه با حضور CPSSs به طور گسترده استفاده شده است. طراحی پارامترهای PSSs به یک مشکل تبدیل شده است برای مشکل بهینه سازی با چند تابع هدف شامل ضریب میرایی مطلوب و نسبت میرایی مطلوب از روش های سیستم قدرت که توسط الگوریتم MSFLA حل شده است. توانایی روش پیشنهاد شده در یک سیستم قدرت تک ماشین تحت شرایط عملیاتی متفاوت و اختلالات تایید شده است. نتایج روش پیشنهاد شده در مقایسه با الگوریتم ژنتیک (GA) مبنی بر تنظیم PSS از طریق برخی از شاخص های عملکرد، عملکرد قوی خود را آشکار میکند.

کلمات کلیدی: طراحی PSS، اصلاح الگوریتم جهش قورباغه (MSFLA) ، بهینه سازی چند هدفه، الگوریتم ژنتیک (GA).

I. مقدمه

یکی از جنبه های مهم در سیستم الکتریکی عملیات پایداری سیستم های قدرت می باشد.

این مسئله را این واقعیت که در سیستم قدرت باید فرکانس و سطح ولتاژ، تحت هر گونه اختلال، مانند افزایش ناگهانی بار، از دست دادن یک ژنراتور یا سوئیچینگ نادرست از یک خط انتقال در طول یک خطا حفظ شود تشکیل می دهند. [1]

در سیستم های قدرت در هنگام و بعد از یک اختلال کوچک یا بزرگ در سیستم نوسانات فرکانس پایین (به ترتیب از 0.1-2.5 هرتز) روی می دهد، به خصوص در میان شرایط بارگذاری زیاد3]. [2، اگر میرایی مناسب وجود نداشته باشد این نوسانات ممکن است ادامه داشته وزیاد شوند و باعث تجزیه سیستم شوند [4]. PSSs موثر ترین ابزار برای میرایی فرکانس پایین نوسانات و افزایش پایداری سیستم های قدرت است [5].

  • فرمت: zip
  • حجم: 0.84 مگابایت
  • شماره ثبت: 411

خرید و دانلود

پروژه مدلسازی و شبیه سازی موتور جریان مستقیم بدون جاروبک 9 فاز BLDC

مقدمه: در نوع تغذیه سینوسی که در واقع ماشین سنکرون مغناطیس دائم [?] (PMSM) میباشد برای ایجاد شار سینوسی علاوه بر اینکه توزیع سیم پیچی فازهای استاتور سینوسی است، ولتاژ اعمالی به فازهای استاتور نیز سینوسی میباشد. لذا دانستن مقدار لحظهای موقعیت روتور الزامی بوده و در نتیجه باید از Encoder های موقعیت دقیق استفاده نمود. مقدار گشتاور لحظهای در این نوع موتور بسیار صاف بوده و ریپل گشتاور ناچیز میباشد. با این وجود ایجاد سیمبندی سینوسی با پیچیدگی بیشتری همراه بوده و تعداد اتصالات داخلی بیشتری را میطلبد. در مجموع ساخت استاتور با اتصالات سینوسی هزینه بیشتری را تحمیل مینماید. این موتور به نام موتور BLACنیز شناخته میشود [?]. شکل ?-?، شکل موج ولتاژ ضد محرکه یک موتور BLAC را نمایش میدهد.

[?]- Permanent MagnetSychronous Motor

فهرست مطالب:

?-?- مقدمه

?-?- تعریف موتور PMBLDC

?-?- تاریخچه و روند گسترش ماشین های PMBLDC

?-?- ساختمان موتور BLDC

?-?-?- استاتور

?-?-?-?- موتورهای BLDC با تغذیه ولتاژ سینوسی (BLAC)

?-?-?-?- موتور BLDC با تغذیه ولتاژ ورودی ذوزنقه ای

?-?-?-?- مقایسه موتور های بدون جاروبک با جریان آرمیچر سینوسی (BLAC) و مربعی (BL

DC)

?-?-?- روتور

?-?-?- سنسورهای هال

?-?-?- مواد مغناطیس دائم

?-?- اصول عملکرد موتور BLDC

?-?-?- تبیین مفهوم کموتاسیون در یک موتور کموتاتور dc

?-?-?- کموتاسیون در موتور BLDC

?-?- مقایسه موتور BLDC با موتور DC و القائی

?-?- مزایا و معایب موتورهای PMBLDC

?-?- انواع توپولوژی های ماشین های BLDC

?-?-?- تکنیک های اتصال آهنربا های دائم به روتور

?-?-?- ساختارهای مختلف استاتور

?-?- شبیه سازی موتور بدون جاروبک ? فاز

?-?? نتیجه گیری

?-??- مراجع

خرید و دانلود

دانلودگزارش کارآموزی در شرکت تابلوبرق در شرکت ایران تکنیک

فهرست مطالب:

مقدمه ?

برخی از استانداردهای تابلوها ?

تعاریف تابلو ها ?

شرایط کار عادی ?

اطلاعات و لوح ویژگیها ?

اینترلاکها ??

طبقه بندی درجه حفاظتی تابلوها ??

علائم به کار رفته ??

کات اوت فیوز – برقگیر ??

سکسیونر قابل قطع زیر بار ??

تابلوی ان – اف ??

باردهی ترانسفورماتور ??

تنظیم ولتاژ ??

مراقبت و نگهداری از ترانسهای قدرت ??

روشهای خشک کردن ترانسها ??

خرید و دانلود

ترجمه مقاله کنترل هموار نوسانات تولید برق فوتوولتائیک (PV) و توان بادی، مبنی بر باتری خانه ذخیره کننده انرژی (BESS)

ترجمه مقاله کنترل هموار نوسانات تولید برق فوتوولتائیک (PV) و توان بادی، مبنی بر باتری‌خانه ذخیره کننده انرژی (BESS) دسته: برق

حجم فایل: 4265 کیلوبایت

تعداد صفحه: 27

کنترل هموار نوسانات تولید برق فوتوولتائیک (PV) و توان بادی، مبنی بر باتری‌خانه ذخیره کننده انرژی (BESS) + نسخه انگلیسی

Battery Energy Storage Station (BESS) -Based Smoothing Control of Photovoltaic (PV) and Wind Power Generation Fluctuations

چکیده _ از باتری خانه ذخیره کننده انرژی (BESS) برای مقاصد فعلی هموار کردن (منظور از بین بردن نوسانات) نوسانات تولید انرژی بادی و خورشیدی استفاده می شود. این سیستم‌های قدرت هیبرید مبنی بر BESS، به یک استراتژی کنترل مناسبی که بتواند به‌صورت موثری سطوح توان خروجی و حالت شارژ (SOC) باتری را تنظیم کند، نیازمندند. این مقاله، نتایج بررسی شبیه سازی سیستم قدرت هیبرید بادی/ فوتوولتائیک (PV) /BESS را که به منظور بهبود عملیات هموار کردن شکل موج توان تولیدی خروجی، و موثر بودن کنترل SOC باتری انجام شده است، ارائه می دهد. یک روش کنترل هموار برای کاهش نوسانات توان خروجی هیبریدی بادی/PV و نیز تنظیم SOC باتری تحت شرایطی خاص، در اینجا ارائه شده است. یک روش جدید تخصیص توان لحظه ای مبنی بر BESS نیز پیشنهاد شده است. فواید این روش‌ها نیز با استفاده از نرم افزار MATLAB/SIMULINK بررسی شده است.

اصطلاحات مربوط__ کنترل هموار سازگار، باتری خانه ذخیره انرژی (BESS) ، تولید توان خورشیدی، حالت شارژ (SOC) ، تولید توان بادی.

فهرست اصطلاحات

WPGS: سیستم تولید WP

PVGS: سیستم تولید توان PV

Vbat: ولتاژ ترمینال سیستم ذخیره انرژی باتری (V)

Ibat: جریان سیستم ذخیره انرژی باتری

Vocv: ولتاژ مدار باز باتری (V)

Rbatint: مقاومت داخلی سیستم ذخیره انرژی باتری

Rch: مقاومت داخلی شارژ

Rdis: مقاومت داخلی دشارژ

SOC: حالت شارژ (%)

SOCini: مقدار اولیه SOC (%)

?: بازده (راندمان) شارژ/دشارژ

ch?: بازده شارژ (%)

dis?: بازده دشارژ (%)

Qbat: ظرفیت سیستم ذخیره انرژی باتری (KWh)

استراتژی کنترل هموار مبنی بر SOC:

ui: وضعیت استارت-استاپ واحد i

SOCi: SOC واحد i (%)

SODi: حالت دشارژ واحد i (%)

L: تعداد کل PCS

M: تعداد کل تجاوز از ماکزیمم (بیشینه) محدودیت‌های حد توان مجاز

T: دوره تناوب تحقیق شده

n: تعداد نمونه‌ها

?t: سیکل کنترل (ثانیه)

: بیشینه توان تخلیه (دشارژ) واحد j (KW)

: بیشینه توان شارژ واحد j (KW)

?WPPV: مقدار حد سرعت نوسان توان تعیین شده (%/min)

Ai: ضریب توان اصلاح شده برای واحد i

SOCref: مقدار مرجع SOC (%)

: بیشینه SOC مجاز واحد i (%)

: کمینه SOC مجاز واحد i (%)

fLT: بلوک جدول سنجش یک-بعدی که در آن ورودی، SOCi باتری بوده و خروجی، Ai می باشد.

fWPPV: تابعی برای محاسبه سرعت اصلی نوسان توان بادی و خورشیدی

fhybrid: تابعی برای محاسبه سرعت نوسان توان هیبریدی بادی/PV/ BESS

rT (WPPV) : سرعت اصلی نوسان توان تولیدی بادی و PV، حین دوره تناوب تحقیق شده (%/min)

RT (hybrid) : سرعت نوسان توان هیبریدی بادی/PV/BESS حین دوره تناوب تحقیق شده (%/min)

Pmax (WPPV) : بیشینه مقدار توان (KW)

Pmin (WPPV) : کمینه مقدار توان

Prated (WPPV) : توان نامی کل تولید بادی و PV (KW)

uWPk: وضعیت استارت-استاپ WPGS k

uPVk: وضعیت استارت-استاپ PVGS k

PratedWP_k : توان نامی WPGS k (KW)

PratedPV_k: توان نامی PVGS k (KW)

PiniBESS : توان اولیه BESS (KW)

PWPPV : توان کل تولید WP و PV (KW)

TWPPV : ثابت زمانی برای کنترل هموار (ثانیه)

s: متغیر مختلط

rWPPV (t) : سرعت اصلی نوسان توان کل تولید PV و WP در زمان t (%/min)

KriseWPPV : مقدار حد زمان سعود (برخاست)

KdropWPPV: مقدار حد سرعت افت (kW/sec)

PDRLWPPV: توان خروجی محدود کننده سرعت دینامیک (DRL) (KW)

PCS: سیستم‌های مبدل توان

Pi: توان هدف PCS i (KW)

PBESS: توان هدف BESS (KW)

PsmoothWPPV : توان هدف هموار (KW)

?WPPV: مقدار حد سرعت نوسان توان تعیین شده

قیمت: 19,500 تومان

خرید و دانلود

مدل سازی، تجزیه و تحلیل و محل بهینه کنترل کننده یکپارچه جریان توان ...

چکیده

مفهوم جدید سیستم انتقال AC انعطاف پذیر (FACTS) تغییرات اساسی در عملکرد و کنترل سیستم قدرت را به ارمغان می آورد. یک روش جدید با استفاده از ادوات FACTS در ارتباط با پیشرفت در تکنولوژی نیمه هادی باز می شود فرصت هایی جدید برای کنترل قدرت و افزایش ظرفیت قابل استفاده از خطوط انتقال موجود هستند. کنترل کننده جریان توان پیوسته برای کنترل زمان واقعی و جبران سازی دینامیکی سیستم های انتقال ابداع شده است، ارائه انعطاف پذیری چند منظوره مورد نیاز برای حل کردن بسیاری از مشکلات پیش روی تحویل توان به صنعت است. در چارچوب مفاهیم انتقال توان سنتی، UPFC قادر به کنترل است، به طور همزمان و یا به صورت انتخابی تمام پارامترهای موثر بر جریان توان در خط انتقال و این قابلیت منحصر به فرد نشانگر صفت «واحد» در نام خود است. UPFC می تواند به طور مستقل هر دو توان اکتیو و راکتیو در خط را کنترل کند.

کلمات کلیدی: UPFC، توان راکتیو، facts

مقدمه

در طول سال ها، روشن شده است که حداکثر ظرفیت عملیاتی مطمئن از سیستم انتقال اغلب نه بر اساس ولتاژ و پایداری زاویه ای بلکه در محدودیت های فیزیکی است. و نیز در سال های اخیر نگرانی های اکولوژیکی و هزینه های نصب و راه اندازی بالا محدودیت های بیش از ساخت نیروگاه های جدید و خطوط هوایی در بسیاری از کشورها قرار داده اند، در نتیجه به اجبار سیستم موجود به طور موثر تر به جای احداث خطوط جدید استفاده می شود، صنعت گرایش به سوی توسعه فن آوری و یا دستگاه هایی که باعث افزایش ظرفیت شبکه انتقال در عین حفظ و یا حتی بهبود پایداری شبکه دارد. [1] هدف اصلی ما برای پاسخگویی به تقاضای بار الکتریکی قابل اطمینان است در حالی که به طور همزمان کیفیت خاص محدودیت های اعمال شده بر روی منبع تغذیه را برآورده کند.

خرید و دانلود