دسته: برق
حجم فایل: 6861 کیلوبایت
تعداد صفحه: 32
الکترونیک صنعتی در مسیر آینده+ نسخه انگلیسی2013
On a Future for Power Electronics
خلاصه- این مقاله نمایی تاریخی و فلسفی از آینده ی ممکن برای الکترونیک قدرت را ارائه می دهد. تکنولوژی ها طول عمر خاصی دارند که به وسیله ی ابداعات داخلی شروع شده و متعاقبا به بلوغ می رسد. اما ظاهرا الکترونیک قدرت پیچیده از این حرفها است، یک تکنولوژی قادر است تا طیف گسترده ای از سطوح قدرت، کارکردها و بکاربری ها را پوشش دهد. همچنین الکترونیک قدرت به تکنولوژی های مختلفی تقسیم می شود. تا به امروز، توسعه ی الکترونیک قدرت عمدتا به وسیله ی تکنولوژی نیمه هادی ها و مدارات کانورتری به پیش رانده شده است و به بلوغی در استانداردهای داخلی اش (مثلا بازده) رسیده است. این مقاله به صورت انتقادی کارکردهای بنیانی یافته شده در پردازنده های انرژی الکترونیکی، زیر زیرتکنولوژی های سازنده ی تکنولوژی الکترونیک قدرت، و فضای تکنولوژی قدرت را در نور فلسفه ی پیشبرنده ی الکترونیک قدرت و توسعه ی تاریخی آن بررسی می کند. در انتها نتیجه گیری می شود که اگرچه نزدیک شدن به مرزهای استانداردهای داخلی آن نشان دهنده ی بلوغ آن است، زیرتکنولوژی های سازنده ی خارجی بسته بندی، تولید، اثرات الکترومغناطیسی و زیست محیطی، و تکنولوژی کنترل کانورتر هنوز فرصتهای قابل توجهی برای توسعه دارند. همان طور که الکترونیک قدرت یک تکنولوژی دردسترس می باشد، توسعه ی آن، به همراه توسعه ی داخلی، نظیر نیمه هادی های با پهنای باند زیاد، به وسیله ی کاربری در آینده به پیش رانده خواهندشد.
کلمات کلیدی: آینده ی الکترونیک قدرت
1-مقدمه
هنگامی که کوشش می کنید تا یک آینده ی ممکن برای الکترونیک قدرت را بسازید راه های متفاوتی در پیش رو دارد. در این مقاله، ما یک منظر تاریخی-فلسفی از بیرون را اختیار می کنیم. این مقاله در ابتدا نیروی پیش برنده ی این روش [بررسی] را در بخش دوم نشان می دهد، بر توسعه ی تاریخی در بخش سوم تمرکز می کند و وضعیت امروزی الکترونیک قدرت را در بخش چهارم بررسی می کند. برای ساده کردن این بحث، کارکردهای بنیادین داخلی برای الکترونیک قدرت پیشنهادشده و تمام حوزه ی الکترونیک قدرت به دو سری هم بسته از زیرتکنولوژی های سازنده تقسیم شده است. بخش پنجم مثالهایی از کاربری های موجود و تکنولوژی های این حوزه ی تولید کنندگان تجهیزات قدرت برای نشان دادن این که چگونه آنها توسعه ی زیرتکنولوژی های سازندهی الکترونیک قدرت را به پیش می رانند ارائه می کند. بخش ششم نیروهای پیشراننده را بررسی می کنند که به اوج اهمیت تکنولوژی ها و کاربری های در حال ظهور در مواجه با توسعه ی آتی الکترونیک قدرت رهنما می شوند.
قیمت: 20,000 تومان
چکیده
معماری پردازنده قدرت کارآمد و پردازنده سلولی این مقاله پیش زمینه و استدلالی را در مورد بعضی از معماری ها و تصمیمات جهت طراحی در پردازنده سلولی، یعنی پردازنده ای که برای محاسبات فشرده و کاربردهای رسانه ای غنی پهنای باند که مشترکا توسط شرکت های سونی، توشیبا و IBM توسعه داده شده است، ارائه می دهد.
مقدمه
بخش بندی این مقاله به صورت زیر می باشد. بخش 2، به بحث در مورد بعضی از چالش هایی می پردازد که طراحان ریزپردازنده ها با ان مواجه می باشند و انگیزه ای را برای فعالیت در هر ترانزیستور به عنوان یک متریک رتبه اول برای کارایی طرح ایجاد می کند. بخش 3 به بحث در مورد افزایش معماری ریزپردازنده به نسبت این معیار متری می پردازد. بخش 4 به بحث در مورد بعضی از انتخاب های معماری دیگر که باعث بهبود کارایی طرح و عملکرد پیک پردازنده می گردد، می پردازد. بخش 5 به بحث در مورد بعضی از محدودیت های انتخاب های معماری که در بخش 3 معرفی شد، می پردازد، و SMP غیرهمگن را به عنوان ابزاری برای غلبه بر این محدودیت ها مطرح می کند. بخش 6 خلاصه ای از تشکیلات پردازنده سلولی را بیان می کند.
عملکرد در هر ترانزیستور به عنوان یک معیار متری معماران ریزپردازنده و معماران مبکرو در چند دهه گذشته تحت تاثیر دو معیار متری اولیه که عملکرد را مشخص می کند، قرار گرفته اند: که شامل عملکرد در هر سیکل (اغلب توسط تعداد دستورالعمل هایی که در هر سیکل پردازنده تکمیل می شود) ، و بسامد طرح (برای نمونه، زمان سیکل طراحی که توسط 4 مبدل تاخیر اندازه گیری می شود) می باشد. در ادغام با قابلیت های فناوری (برای نمونه یک تریلیون ثانیه در هر fo4) و محدودیت های سیستم (برای نمونه شرایط دسته بندی، تنوع منبع تغذیه، تغییرات تصادفی نامطلوب در منبع، و شرایط حرارتی) می باشد. این موارد به تعیین فرکانس عملیاتی نهایی و عملکرد محصول نهایی می پردازد.
امروزه، معماران و معماران میکرو، و همچنین طراحان منطق و مدار، می بایست بازده توان را مد نظر قرار دهند، زیرا تقریبا تمام سیستم ها از پلتفرم موبایل تا کامپیوترهای شخصی و ایستگاه های کاری تا بزرگترین ابر کامپیوتر ها هم اکنون از نظر توان برقی محدود می باشند. این موارد نشان می دهد که می بایست از بازده توان به عنوان یکی از معیارهای متری و محرک طرح های ریزپردازنده ها استفاده کنیم.
تعدادی از این معیارهای متری از نظر بازدهی مد نظر قرار می گیرند، که در محدوده انرژی در هر فعالیت تا تاخیر- انرژی می باشد. هر یک از این معیارهای متری به موازنه عملکرد پردازنده از نظر بازدهی می پردازند و هر یک از این معیارهای متری می تواند مناسب باشد. به هر حال، در این مقاله، ما به بررسی عملکرد در هر ترانزیستور به عنوان یک معیار متری می پردازیم. این معیار متری، عملکرد را در هر وات تخمین می زنند در صورتی که مقدار ثابتی را در هر تاوان توان ترانزیستور مد نظر قرار دهیم. این فرایند زمانی منطقی می باشد که فناوری CMOS با عملکرد بالا مورد استفاده قرار گرفته و مقدار ثابتی از این توان به زیر استاندارد و جریانات تونل سازی اکسید مدخل افت کند، و زمانی که هدف بهینه سازی عملکرد تقویت بوده زمانی که بخش قابل توجهی از تراشه ها مورد استفاده قرار گیرد.
دسته: برق
حجم فایل: 554 کیلوبایت
تعداد صفحه: 19
معرفی تکنولوژی میکروتوربین های گازی:
میکروتوربین ها در واقع توربینهای گازی کوچکی هستند که معمولاً ظرفیت آنها بین 30 تا 500 کیلووات می باشد. در یک میکروتوربین هوا توسط یک کمپرسور جریان شعاعی (سانتریفوژ) متراکم شده و سپس در یک مبدل حرارتی رکوپراتور، توسط گازهای گرم خروجی از توربین، پیش گرم می شود.
آنگاه هوای گرم شده در محفظه احتراق با سوخت مخلوط شده و محترق میگردند. گازهای داغ حاصل از احتراق که فشار و دمای بالایی دارند، در یک توربین منبسط شده و از این طریق روی توربین کار انجام می دهند. سپس این کار توسط یک ژنراتور به توان الکتریسیته تبدیل م یشود. کار حاصل از انبساط با چرخاندن توربین، باعث حرکت دادن کمپرسور نیز میشود.
سرانجام گازهای خروجی از توربین انبساط به مبدل حرارتی رکوپراتور رفته و باعث پیش گرم شدن هوای خروجی از کمپرسور میشود.
اکثر طرح های میکروتوربین ها تک محوره می باشد که از یک ژنراتور مغناطیس دائم سرعت بالا، برای تولید ولتاژ و فرکانس استفاده می شود. بیشتر واحدهای میکروتوربینها برای مصارف دائمی طراحی میشوند که می توان متغیر جریان متناوب برای افزایش راندمان، گرما را نیز بازیافت کرد.
فهرست مطالب:
معرفی تکنولوژی میکروتوربین های گازی
مشخصات عمومی میکروتوربین ها
میکروتوربین های دارای رکوپراتور
سیستم عملکرد میکروتوربین
سازندگان میکروتوربین ها
میکروتوربین
توزیع تولید با استفاده از میکروتوربین ها
میکرو توربین (آینده انرژی های پاک)
کاربردهای مختلف میکرو توربین ها
تولید پیوسته توان الکتریکی
تولید حرارت، سرما و الکتریسیته
پیک سایی
تامین نیروی الکتریکی پشتیبان
بازیابی منابع سوختی
کاربرد در صنایع نفت، گاز و پتروشیمی
کاربرد ها در کشاورزی و گل خانه ها
کاربرد در سیستم های حمل نقل شهری
مقایسه میزان الودگی g/bhp-hr
مقایسه میزان آلودگی سیستم های مختلف
دلایل استفاده از میکروتوربین ها
مروری بر تکنولوژی میکروتوربین ها
اساس کار و اجزای اصلی میکروتوربین ها در یک نگاه
انواع میکروتوربین ها
سیکل ترمودینامیکی میکروتوربین ها
پکیج توربو کمپرسور
مبدل حرارتی
تکیه گاه های شفت دوار یا بیرینگ ها
مزایای تولید همزمان برق و حرارت
قیمت: 5,000 تومان
خلاصه
هدایت انرژی توسط بشر یک داستان تخیلی علمی نمی باشد. این ها تسلیحات واقعی می باشند که در سناریوهای واقعی مورد آزمایش قرار می گیرند... و کشورهایی که آمادگی استفاده از این انرژی های هدایت شده را ندارند از حرکت باز می ایستند و یا بدتر با استفاده از تجهیزات سنتی و از کار افتاده جنگی، متحمل شکست می گردند. آن ها پیشرفتی نداشته و همانند تمدنی می گردند که همچنان به تیر و کمان خود وابسته بوده و در برابر تفنگ و گلوله و بمب به زانو در می آیند.
در این بررسی، نظریه HPM (منبع قدرت میکروویو) و اصول طراحی کلی معرفی شده در تحقیقات قبلی، به تعریف مفاهیم مربوط به بمب های الکترونیکی می پردازند. بمب الکترونیکی شامل منبع قدرت میکروویو HPM، موج بر مناسب و یک آنتن/الکترود بازتابنده می باشد. پالس هایی که توسط منبع قدرت میکروویو (HPM) ایجاد می گردد به صورت امواج مستطیلی شکل می باشد.
دسته: مقالات ترجمه شده isi
حجم فایل: 581 کیلوبایت
تعداد صفحه: 8
انتخاب مسیر پایا درODMRP با استفاده از محدودیت انرژی در شبکه های سیار موردی
فهرست
مقدمه
پروتکل ODMRP
روش ارائه شده
متدولوژی
نتایج شبیه سازی
نتیجه گیری
چکیده
شبکه های Ad hoc مجموعه ای از نودهای سیار می باشد که بوسیله لینکهای بی سیم به یکدیگر متصل شده اند و می توانند آزادانه به هر طرف حرکت کنند، و ارتباط بین آنها نیز ممکن است بطور متناوب در نتیجه تحرک نودها تغییر کند. چندپخشی یکی از روشهای موثری می باشد که می تواند برای کاربرد های Ad hoc سرویس های لازم را فراهم کند. اما در نتیجه پویایی توپولوژی شبکه و محدودیت منابع، پیدا کردن و نگهداری مسیر برای چندپخشی داده دارای چالش های زیاد می باشد. پروتکل های زیادی برای چندپخشی کردن در شبکه های Ad hoc طراحی شده است که ODMRP یکی از آنها می باشد. ODMRP یک پروتکل مبتنی بر Mesh و بر حسب تقاضا می باشد که از مفهوم گروه ارسالی برای برقراری مش در هر گروه چندپخشی استفاده می کند. در ODMRP پایه معیار انتخاب مسیر، کمترین تاخیر می باشد که این باعث می شود در بیشتر مواقع مسیر مورد نظر مسیر پایا نباشد. در این مقاله برای افزایش پایایی مسیر انتخاب شده بین مبدأ و مقصد روش جدیدی ارائه می شود که در آن در فرآیند انتخاب مسیر برای ارسال داده در ODMRP، علاوه بر کمترین تاخیر، بررسی مسیر پایا با محاسبه انرژی نودها نیز انجام می گیرد. برای نشان دادن بهبود روش ارائه شده، تاثیر اندازه گروه و سرعت تحرک را در کنترل سربار و تأخیر انتها به انتها مورد بررسی قرار می دهیم. نتایج شبیه سازی نشان می دهد که با در نظر گرفتن انرژی نودها در انتخاب مسیر، پایداری مسیر نیز افزایش می یابد.
کلمات کلیدی: مسیریابی، چند پخشی، شبکه های Ad hoc، انرژی نود، ODMRP.
Abstract-A MANET is a set of mobile nodes connected by wireless link and are free to move dynamically and unpredictable in environment، but this dynamic nature of the network topology cause many challenges in MANET. Multicasting is an efficient way of providing necessary services for Ad hoc applications. Due to the dynamic nature of the network topology and restricted resources، finding and maintaining the routes for multicasting the data is still more challenging. Many Protocols have designed for multicasting in MANETs that On-Demand Multicast Routing Protocol is one of them. ODMRP is on-demand and mesh based protocol that uses forwarding group to establish a mesh for each multicasting group. In this paper، we discuss stable route selection in ODMRP for forwarding data. In basic ODMRP route selection function uses minimum delay. But in proposed approach we consider nodes energy in route selection from source to destination. For presenting PDR improvement in proposed approach، we discuss group size and mobility speed in control overhead and end to end delay. Result of simulation illustrate that our approach can improve stability of route due to energy consumption.
Keywords: Routing، Multicasting، Ad hoc، ODMRP، Energy Consumption.
1- مقدمه
بنابراین دامنه ارتباطی هر نود در MANET ها محدود می باشد، و در هر زمان یک نود می تواند بسته ها را با نودهای دیگر در دامنه دریافت/ ارسال خود مبادله کند. پروتکل های زیادی برای مسیریابی در شبکه های Ad hoc طراحی شده اند. اما پروتکل مسیریابی خوب باید همیشه بسته ها را از طریق کوتاهترین مسیر از مبدأ به مقصد ارسال کند و با تغییرات توپولوژی سریعتر منطبق باشد. برخی پروتکل های مسیریابی Ad hoc جدول های مسیر یابی را در هر نود نگهداری می کنند که شامل مسیری برای هر ارتباط ممکن می باشد. هر تغییر در شبکه باید به همه نودها در شبکه ارسال شود تا اینکه آنها جدول های مسیر یابی خود را بروز کنند. برخی دیگر از پروتکل ها نیز بصورت پویا مقصد های مورد نظر را جستجو می کنند. که این جستجو نیاز به ارسال انبوه به شبکه از طریق پیغام های جستجو دارد. تا زمانی که مقصد بدست آمده و مسیریابی مشخص شود.
Abstract-A MANET is a set of mobile nodes connected by wireless link and are free to move dynamically and unpredictable in environment، but this dynamic nature of the network topology cause many challenges in MANET. Multicasting is an efficient way of providing necessary services for Ad hoc applications. Due to the dynamic nature of the network topology and restricted resources، finding and maintaining the routes for multicasting the data is still more challenging. Many Protocols have designed for multicasting in MANETs that On-Demand Multicast Routing Protocol is one of them. ODMRP is on-demand and mesh based protocol that uses forwarding group to establish a mesh for each multicasting group. In this paper، we discuss stable route selection in ODMRP for forwarding data. In basic ODMRP route selection function uses minimum delay. But in proposed approach we consider nodes energy in route selection from source to destination. For presenting PDR improvement in proposed approach، we discuss group size and mobility speed in control overhead and end to end delay. Result of simulation illustrate that our approach can improve stability of route due to energy consumption.
Keywords: Routing، Multicasting، Ad hoc، ODMRP، Energy Consumption.
قیمت: 10,000 تومان
آنتالپی
آنتالپی
گرمای جذب شده بوسیله واکنشی که در فشار ثابت انجام می گیرد برابر با تغییر آنتالپی است. آنتالپی، همانند انرژی داخلی، تابعی از حالت سیستم و مستقل از راهی است که به آن حالت می رسد. یعنی تابع حالت و یک کمیت شدتی است.
کار در واکنشهای شیمیایی
برای واکنشهای شیمیایی عادی، کار عموما ناشی از تغییرات فشار، حجم است. اگر سیستم (به علت گاز) منبسط شود، در برابر فشار اتمسفر کار انجام می دهد و این نمونه ای از کار فشار - حجم است. جمله PV دارای ابعاد کار است. فشار که نیرو بر واحد سطح است، بر حسب نیوتن بر متر مربع N/m۲ بیان می شود.
پروژه برق گرفتگی و مقاومت بدن انسان در برابر آن سیستم برق دارای خصوصیات فراوانی است که تا جایی که مربوط به سهم آن در برق گرفتگی می شود باید گفت که نقش اصلی را بازی می کند. اگر سیستم برق وجود نمی داشت صحبت از برق گرفتگی هم معنا پیدا نمی کرد. بدن انسان همانند تمام موجودات زنده از نقطه نظر قابلیت هدایت الکتریکی قابل تشبیه به مجموعه ای از مقاومت ها و ظرفیت ها می باشد.
از این موضوع نتیجه می شود، چنانچه تحت تأثیر یک نیروی الکتروموتوری متناوب قرار گیرد. از آن جریانی عبور می کند که اگر شدت آن از حد معینی بیشتر باشد باعث صدماتی در بدن خواهد شد که میزان این صدمات بیشتر به مسیر عبوری جریان، شدت جریان و مدت زمان عبور آن دارد.
به عنوان مثال بدترین حالت زمانی است که جریان مسیری را بپیماید که قلب در سر راه آن قرار گرفته باشد و مدت زمان و شدت آن نیز زیاد باشد.
در این پروژه به موضوع برق گرفتگی و مقاومت بدن انسان در برابر آن پرداخته شده است. که در ادامه سرفصل های آن را مشاهده می فرمایید:
چکیده برق گرفتگی و مقاومت بدن در برابر برق گرفتگی
فصل ۱- بررسی فیزیولوژیک بدن انسان در مقابل جریان های الکتریکی
۱-۱- مقدمه
۱-۲- شرایط کلی برق گرفتگی
۱-۲-۱- سیستم برق
۱-۲-۲- محیط زیست
۱-۲-۳- موجود زنده
۱-۳- ساختار الکتریکی بدن انسان
۱-۴- برق گرفتگی
۱-۵- زاویه امپدانس
۱-۶- خطرات جریان برق به چه عواملی بستگی دارد
۱-۷- اثر ولتاژ
۱-۸- اثر شدت جریان
۱-۹- واکنش بدن در ولتاژDC در جریان های مختلف
۱-۱۰- اثر مقاومت مدار
۱-۱۱- مسیر عبور جریان
۱-۱۲- نوع جریان (AC-DC)
۱-۱۳- اثر فرکانس در برق گرفتگی
۱-۱۴- وجود جرقه به همراه برق گرفتگی
۱-۱۵- مدت زمان عبور جریان
۱-۱۶- وضع مدار جریان برق
۱-۱۷- عوارض برق گرفتگی و برق زدگی
۱-۱۸- سکل های حاصل از حوادث برق
۱-۱۹- برق گرفتگی ناشی از صاعقه
۱-۲۰- مقایسه خصوصیات و اثرات صاعقه و الکتریسیته مصنوعی
۱-۲۱- اثرات دیگر صاعقه زدگی
۱-۲۲- طبقه بندی شدت سوختگی
۱-۲۳- عوارض سوختگی
۱-۲۴- اقدامات درمانی (تجویز مایعات)
۱-۲۵- جمع بندی فصل اول
فصل ۲- بررسی اثرات جریان های AC,DC بر روی بدن انسان
۲-۱- مقدمه
۲-۲- تاریخچه جریان های DC,AC
۲-۳- اثر پوستی جریان های AC
۲-۴- مزیت های اقتصادی جریان هاDC
۲-۵- جریان هایDC دو قطبی و تک قطبی
۲-۶- وجود مدارشکن ها در جریان هایAC
۲-۷- مدت زمان های مجاز تماس ولتاژهایAC,DC
۲-۸- خطر جریان متناوب نسبت به مستقیم
۲-۹- بررسی صدمات عضلانی جریانDC نسبت بهAC
۲-۱۰- چگالی جریان
۲-۱۱- میزان آثار متناسب با فرکانس
۲-۱۲- میدان الکتریکی نزدیک خطوط انرژی
۲-۱۳- بستگی آماری بین بیماری و عوامل محیطی
۲-۱۴- خطر ابتلا به بیماری سرطان برای ساکنان اطراف کابل های برق فشار قوی
فصل ۳- مطالعه و بررسی نقش حفاظتی زمین کردن
۳-۱- مقدمه
۳-۲- زمین کردن
۳-۳- زمین های تک نقطه ای
جزوه حاضر جهت استفاده دانشجویان رشته های مهندسی عمران و مکانیک تهیه شده است در این جزوه ۸ آزمایش مهم که در اکثر دانشگاهها تدریس می شود بیان گردیده است و هر آزمایش در یک فصل جداگانه آمده است در این مجموعه ضمن آشنا ساختن دانشجویان با دستگاه مورد آزمایش و روش انجام آزمایش، بصورت خلاصه در مورد تئوری مربوط به آزمایشات توضیحاتی ارائه شده است هم چنین ضمن بیان اهداف آزمایش، موارد ارائه نتایج که به صورت جداول یا نمودارها است و می بایست توسط دانشجویان تکمیل شود ذکر گردیده استبطور کلی جهت فراگیری و درک عمیق از موضوعات پیچیده علمی، نمی توان فقط از طریق مطالعه و با شنیدن مطالب به این هدف رسید بلکه می بایست با انجام آزمایشات و از روش های تجربی، پدیده های مختلف را مشاهده و مورد تجزیه و تحلیل قرار داد دانشجویان با انجام آزمایشات، ضمن آشنا شدن با وسایل مختلف و روشهای مختلف اندازه گیری با تجزیه و تحلیل داده ها و یافته های آزمایشگاهی، به شناخت و درک عمیق مطالب خواهند رسید. توصیه می شود دانشجویان قبل از انجام هر آزمایش، ضمن مطالعه مطالب مربوط به آن آزمایش و اندیشیدن به مطالب تئوری آن، در حین آزمایش با قسمتها و جزئیات مختلف دستگاه و همچنین روش انجام آزمایشات آشنا گردند. پس از انجام آزمایشات ضمن درج داده ها و یافته های آزمایشگاهی در جداول، با انجام محاسبات لازم و با ارائه نمودارها و رسم منحنی ها به شرح و بسط مشاهدات پرداخته و با روشهای مختلف محاسباتی به تجزیه و تحلیل نتایج و بدست آوردن روابط اقدام نمود پس از این مرحله با تنظیم گزارش آزمایشگاهی و با رعایت روشهای صحیح و استاندارد نتایج کار را ارائه نمود.
فهرست مطالب:
فصل اول: آشنایی با میز هیدرولیکی ۳
فصل دوم: جریان عبوری از ونتوری متر ۹
فصل سوم: جریان عبوری از اوریفیس ۱۷
فصل چهارم: برخورد جت ۲۴
فصل پنجم: وسایل اندازه گیری شدت جریان ۳۱
فصل ششم: جریان عبوری از سرریزها ۴۵
فصل هفتم: افت انرژی در شبکه ها ۵۳
فصل هشتم: جریان های گردابی (ورتکس) ۶۸
فصل نهم: آزمایش مرکز فشار ۸۲